Randall K. Kolka


2023

DOI bib
Upscaling Wetland Methane Emissions From the FLUXNET‐CH4 Eddy Covariance Network (UpCH4 v1.0): Model Development, Network Assessment, and Budget Comparison
Gavin McNicol, Etienne Fluet‐Chouinard, Zutao Ouyang, Sara Knox, Zhen Zhang, Tuula Aalto, Sheel Bansal, Kuang‐Yu Chang, Min Chen, Kyle Delwiche, Sarah Féron, Mathias Goeckede, Jinxun Liu, Avni Malhotra, Joe R. Melton, W. J. Riley, Rodrigo Vargas, Kunxiaojia Yuan, Qing Ying, Qing Zhu, Pavel Alekseychik, Mika Aurela, David P. Billesbach, David I. Campbell, Jiquan Chen, Housen Chu, Ankur R. Desai, E. S. Euskirchen, Jordan P. Goodrich, Timothy J. Griffis, Manuel Helbig, Takashi Hirano, Hiroki Iwata, Gerald Jurasinski, John S. King, Franziska Koebsch, Randall K. Kolka, Ken W. Krauss, Annalea Lohila, Ivan Mammarella, Mats E Nilson, Asko Noormets, Walter C. Oechel, Matthias Peichl, Torsten Sachs, Ayaka Sakabe, Christopher Schulze, Oliver Sonnentag, Ryan C. Sullivan, Eeva‐Stiina Tuittila, Masahito Ueyama, Timo Vesala, Eric J. Ward, Christian Wille, Guan Xhuan Wong, Donatella Zona, L. Windham‐Myers, Benjamin Poulter, Robert B. Jackson
AGU Advances, Volume 4, Issue 5

Abstract Wetlands are responsible for 20%–31% of global methane (CH 4 ) emissions and account for a large source of uncertainty in the global CH 4 budget. Data‐driven upscaling of CH 4 fluxes from eddy covariance measurements can provide new and independent bottom‐up estimates of wetland CH 4 emissions. Here, we develop a six‐predictor random forest upscaling model (UpCH4), trained on 119 site‐years of eddy covariance CH 4 flux data from 43 freshwater wetland sites in the FLUXNET‐CH4 Community Product. Network patterns in site‐level annual means and mean seasonal cycles of CH 4 fluxes were reproduced accurately in tundra, boreal, and temperate regions (Nash‐Sutcliffe Efficiency ∼0.52–0.63 and 0.53). UpCH4 estimated annual global wetland CH 4 emissions of 146 ± 43 TgCH 4 y −1 for 2001–2018 which agrees closely with current bottom‐up land surface models (102–181 TgCH 4 y −1 ) and overlaps with top‐down atmospheric inversion models (155–200 TgCH 4 y −1 ). However, UpCH4 diverged from both types of models in the spatial pattern and seasonal dynamics of tropical wetland emissions. We conclude that upscaling of eddy covariance CH 4 fluxes has the potential to produce realistic extra‐tropical wetland CH 4 emissions estimates which will improve with more flux data. To reduce uncertainty in upscaled estimates, researchers could prioritize new wetland flux sites along humid‐to‐arid tropical climate gradients, from major rainforest basins (Congo, Amazon, and SE Asia), into monsoon (Bangladesh and India) and savannah regions (African Sahel) and be paired with improved knowledge of wetland extent seasonal dynamics in these regions. The monthly wetland methane products gridded at 0.25° from UpCH4 are available via ORNL DAAC ( https://doi.org/10.3334/ORNLDAAC/2253 ).

2022

DOI bib
Warming response of peatland CO2 sink is sensitive to seasonality in warming trends
Manuel Helbig, Tatjana Živković, Pavel Alekseychik, Mika Aurela, Tarek S. El‐Madany, E. S. Euskirchen, Lawrence B. Flanagan, Timothy J. Griffis, Paul J. Hanson, J. Hattakka, Carole Helfter, Takashi Hirano, Elyn Humphreys, Gerard Kiely, Randall K. Kolka, Tuomas Laurila, Paul Leahy, Annalea Lohila, Ivan Mammarella, Mats B. Nilsson, A. V. Panov, Frans‐Jan W. Parmentier, Matthias Peichl, Janne Rinne, D. Tyler Roman, Oliver Sonnentag, Eeva‐Stiina Tuittila, Masahito Ueyama, Timo Vesala, Patrik Vestin, Simon Weldon, Per Weslien, Sönke Zaehle
Nature Climate Change, Volume 12, Issue 8

Peatlands have acted as net CO2 sinks over millennia, exerting a global climate cooling effect. Rapid warming at northern latitudes, where peatlands are abundant, can disturb their CO2 sink function. Here we show that sensitivity of peatland net CO2 exchange to warming changes in sign and magnitude across seasons, resulting in complex net CO2 sink responses. We use multiannual net CO2 exchange observations from 20 northern peatlands to show that warmer early summers are linked to increased net CO2 uptake, while warmer late summers lead to decreased net CO2 uptake. Thus, net CO2 sinks of peatlands in regions experiencing early summer warming, such as central Siberia, are more likely to persist under warmer climate conditions than are those in other regions. Our results will be useful to improve the design of future warming experiments and to better interpret large-scale trends in peatland net CO2 uptake over the coming few decades.