Raoul‐Marie Couture


2022

DOI bib
Floating solar panels on reservoirs impact phytoplankton populations: A modelling experiment
Giles Exley, Trevor Page, Stephen J. Thackeray, Andrew M. Folkard, Raoul‐Marie Couture, Rebecca R. Hernandez, Alexander E. Cagle, Kateri R. Salk, Lucie Clous, Peet Whittaker, Michael Chipps, Alona Armstrong
Journal of Environmental Management, Volume 324

Floating solar photovoltaic (FPV) deployments are increasing globally as the switch to renewable energy intensifies, representing a considerable water surface transformation. FPV installations can potentially impact aquatic ecosystem function, either positively or negatively. However, these impacts are poorly resolved given the challenges of collecting empirical data for field or modelling experiments. In particular, there is limited evidence on the response of phytoplankton to changes in water body thermal dynamics and light climate with FPV. Given the importance of understanding phytoplankton biomass and species composition for managing ecosystem services, we use an uncertainty estimation approach to simulate the effect of FPV coverage and array siting location on a UK reservoir. FPV coverage was modified in 10% increments from a baseline with 0% coverage to 100% coverage for three different FPV array siting locations based on reservoir circulation patterns. Results showed that FPV coverage significantly impacted thermal properties, resulting in highly variable impacts on phytoplankton biomass and species composition. The impacts on phytoplankton were often dependent on array siting location as well as surface coverage. Changes to phytoplankton species composition were offset by the decrease in phytoplankton biomass associated with increasing FPV coverage. We identified that similar phytoplankton biomass reductions could be achieved with less FPV coverage by deploying the FPV array on the water body's faster-flowing area than the central or slower flowing areas. The difference in response dependent on siting location could be used to tailor phytoplankton management in water bodies. Simulation of water body-FPV interactions efficiently using an uncertainty approach is an essential tool to rapidly develop understanding and ultimately inform FPV developers and water body managers looking to minimise negative impacts and maximise co-benefits.

DOI bib
Response of sediment phosphorus partitioning to lanthanum-modified clay amendment and porewater chemistry in a small eutrophic lake
Wessam Neweshy, Dolors Planas, Elisabeth Tellier, Marie-France Demers, Rémi Marsac, Raoul‐Marie Couture
Environmental Science: Processes & Impacts, Volume 24, Issue 9

Sustained eutrophication of the aquatic environment by the remobilization of legacy phosphorus (P) stored in soils and sediments is a prevailing issue worldwide. Fluxes of P from the sediments to the water column, referred to as internal P loading, often delays the recovery of water quality following a reduction in external P loads. Here, we report on the vertical distribution and geochemistry of P, lanthanum (La), iron (Fe) and carbon (C) in the culturally eutrophied Lake Bromont. This lake underwent remediation treatment using La modified bentonite (LMB) commercially available as Phoslock™. We investigated the effectiveness of LMB in decreasing soluble reactive phosphorus (SRP) availability in sediments and in reducing dissolved fluxes of P across the sediment-water interface. Sediment cores were retrieved before and after LMB treatment at three sites representing bottom sediment, sediment influenced by lakeside housing and finally littoral sediment influenced by the lake inflow. Sequential extractions were used to assess changes in P speciation. Depth profiles of dissolved porewater concentrations were obtained after LMB treatment at each site. Results indicate that SRP extracted from the sediments decreased at all sites, while total extracted P (PTOT) bound to redox-sensitive metal oxides increased. 31P NMR data on P extract reveals that 20-43% of total solid-phase P is in the form of organic P (Porg) susceptible to be released via microbial degradation. Geochemical modelling of porewater data provides evidence that LaPO4(s) mineral phases, such as rhabdophane and/or monazite, are likely forming. However, results also suggest that La3+ binding by dissolved organic carbon (DOC) hinders La-phosphate precipitation. We rely on thermodynamic modelling to suggest that high Fe2+ would bind to DOC instead of La3+, therefore promoting P sequestrations by LMB under anoxic conditions.

2021

DOI bib
Warming combined with experimental eutrophication intensifies lake phytoplankton blooms
Kateri R. Salk, Jason J. Venkiteswaran, Raoul‐Marie Couture, Scott N. Higgins, Michael Paterson, Sherry L. Schiff
Limnology and Oceanography, Volume 67, Issue 1

Phytoplankton blooms are a global water quality issue, and successful management depends on understanding their responses to multiple and interacting drivers, including nutrient loading and climate change. Here, we examine a long-term dataset from Lake 227, a site subject to a fertilization experiment (1969–present) with changing nitrogen:phosphorus (N:P) ratios. We applied a process-oriented model, MyLake, and updated the model structure with nutrient uptake kinetics that incorporated shifting N:P and competition among phytoplankton functional groups. We also tested different temperature and P-loading scenarios to examine the interacting effects of climate change and nutrient loading on phytoplankton blooms. The model successfully reproduced lake physics over 48 yr and the timing, overall magnitude, and shifting community structure (diazotrophs vs. non-diazotrophs) of phytoplankton blooms. Intra- and interannual variability was captured more accurately for the P-only fertilization period than for the high N:P and low N:P fertilization periods, highlighting the difficulty of modeling complex blooms even in well-studied systems. A model scenario was also run which removed climate-driven temperature trends, allowing us to disentangle concurrent drivers of blooms. Results showed that increases in water temperature in the spring led to earlier and larger phytoplankton blooms under climate change than under the effects of nutrient fertilization alone. These findings suggest that successful lake management efforts should incorporate the effects of climate change in addition to nutrient reductions, including intensifying and/or expanding monitoring periods and incorporating climate change into uncertainty estimates around future conditions.

DOI bib
Evaluating spatiotemporal patterns of arsenic, antimony, and lead deposition from legacy gold mine emissions using lake sediment records
Izabela Jasiak, Johan A. Wiklund, Émilie Leclerc, James V. Telford, Raoul‐Marie Couture, Jason J. Venkiteswaran, Roland I. Hall, Brent B. Wolfe
Applied Geochemistry, Volume 134

Gold mining operations near Yellowknife (Northwest Territories, Canada) released vast quantities of arsenic trioxide during the 1950s, which dispersed across the landscape. Contemporary measurements of arsenic concentrations in lake water and surficial sediment identify enrichment within a 30 km radius. However, paleolimnological studies have identified possible evidence of mining influence during the 1950s at a lake beyond this distance, suggesting a more expansive legacy footprint may exist. Here, we analyze spatiotemporal patterns of arsenic, antimony, and lead deposition from sediment cores at lakes located 10–40 km (near-field) and 50–80 km (far-field) from the mines along the prevailing northwesterly wind direction (NW) and 20–40 km to the northeast (NE) of the mines to improve characterization of the legacy footprint of emissions. We build upon previous findings to determine if: 1) there is evidence of mine-related pollutants beyond the well-established 30 km radius and 2) enrichment is greatest in the prevailing wind direction, as expected for aerial dispersion from a point source of emissions. Results demonstrate enrichment since the 1950s for arsenic and antimony at least as far as 80 km to the NW and 40 km to the NE, thus legacy deposition extended beyond the currently defined 30 km radius ‘zone of immediate influence’. Concentrations, enrichment factors, and total excess inventories of arsenic and antimony decline with distance from the mines and are greater along the prevailing (NW) than orthogonal (NE) wind direction. Peak concentrations in uppermost sediment strata at near-field lakes in the prevailing wind direction suggest supply of arsenic and antimony remains high from legacy stores in the catchment and lake sediment profiles >60 years after emissions were released. Such lasting influence of legacy emissions likely is not limited to mines in the Yellowknife region, and paleolimnological approaches can effectively delineate zones of past and ongoing pollution from legacy sources elsewhere. • We analyze metals in sediment cores to track dispersal of legacy mine emissions. • Enrichment of As and Sb evident beyond known 30-km radius pollution zone. • Distance from source and wind direction influenced contaminant dispersal. • Enriched surface sediments within 30 km suggest ongoing delivery of legacy metals.