Raquel Alfaro‐Sánchez


2023

DOI bib
The influence of postfire recovery and environmental conditions on boreal vegetation
Alexis Gardiner Jorgensen, Raquel Alfaro‐Sánchez, Steven G. Cumming, Alison L. White, Geneviève É. Degré‐Timmons, Nicola J. Day, M. R. Turetsky, Jill F. Johnstone, Xanthe J. Walker, Jennifer L. Baltzer
Ecosphere, Volume 14, Issue 7

Abstract Climate change is increasing the frequency and extent of fires in the boreal biome of North America. These changes can alter the recovery of both canopy and understory vegetation. There is uncertainty about plant and lichen recovery patterns following fire, and how they are mediated by environmental conditions. Here, we aim to address these knowledge gaps by studying patterns of postfire vegetation recovery at the community and individual species level over the first 100+ years following fire. Data from vegetation surveys collected from 581 plots in the Northwest Territories, Canada, ranging from 1 to 275 years postfire, were used to assess the influence of time after fire and local environmental conditions on plant community composition and to model trends in the relative abundance of several common plant and lichen species. Time after fire significantly influenced vegetation community composition and interacted with local environmental conditions, particularly soil moisture. Soil moisture individually (in the absence of interactions) was the most commonly significant variable in plant and lichen recovery models. Patterns of postfire recovery varied greatly among species. Our results provide novel information on plant community recovery after fire and highlight the importance of soil moisture to local vegetation patterns. They will aid northern communities and land managers to anticipate the impacts of increased fire activity on both local vegetation and the wildlife that relies on it.

DOI bib
Black spruce (Picea mariana) seed availability and viability in boreal forests after large wildfires
Kirsten A. Reid, Nicola J. Day, Raquel Alfaro‐Sánchez, Jill F. Johnstone, Steven G. Cumming, Michelle C. Mack, M. R. Turetsky, Xanthe J. Walker, Jennifer L. Baltzer
Annals of Forest Science, Volume 80, Issue 1

Abstract Key message Black spruce ( Picea mariana (Mill.) B.S.P.) has historically self-replaced following wildfire, but recent evidence suggests that this is changing. One factor could be negative impacts of intensifying fire activity on black spruce seed rain. We investigated this by measuring black spruce seed rain and seedling establishment. Our results suggest that increases in fire activity could reduce seed rain meaning reductions in black spruce establishment. Context Black spruce is an important conifer in boreal North America that develops a semi-serotinous, aerial seedbank and releases a pulse of seeds after fire. Variation in postfire seed rain has important consequences for black spruce regeneration and stand composition. Aims We explore the possible effects of changes in fire regime on the abundance and viability of black spruce seeds following a very large wildfire season in the Northwest Territories, Canada (NWT). Methods We measured postfire seed rain over 2 years at 25 black spruce-dominated sites and evaluated drivers of stand characteristics and environmental conditions on total black spruce seed rain and viability. Results We found a positive relationship between black spruce basal area and total seed rain. However, at high basal areas, this increasing rate of seed rain was not maintained. Viable seed rain was greater in stands that were older, closer to unburned edges, and where canopy combustion was less severe. Finally, we demonstrated positive relationships between seed rain and seedling establishment, confirming our measures of seed rain were key drivers of postfire forest regeneration. Conclusion These results indicate that projected increases in fire activity will reduce levels of black spruce recruitment following fire.

2022

DOI bib
What Drives Reproductive Maturity and Efficiency in Serotinous Boreal Conifers?
Raquel Alfaro‐Sánchez, J. F. Johnstone, Steven G. Cumming, Nicola J. Day, Michelle C. Mack, Xanthe J. Walker, Jennifer L. Baltzer
Frontiers in Ecology and Evolution, Volume 10

In boreal North America, much of the landscape is covered by fire-adapted forests dominated by serotinous conifers. For these forests, reductions in fire return interval could limit reproductive success, owing to insufficient time for stands to reach reproductive maturity i.e., to initiate cone production. Improved understanding of the drivers of reproductive maturity can provide important information about the capacity of these forests to self-replace following fire. Here, we assessed the drivers of reproductive maturity in two dominant and widespread conifers, semi-serotinous black spruce and serotinous jack pine. Presence or absence of female cones were recorded in approximately 15,000 individuals within old and recently burned stands in two distinct ecozones of the Northwest Territories (NWT), Canada. Our results show that reproductive maturity was triggered by a minimum tree size threshold rather than an age threshold, with trees reaching reproductive maturity at smaller sizes where environmental conditions were more stressful. The number of reproductive trees per plot increased with stem density, basal area, and at higher latitudes (colder locations). The harsh climatic conditions present at these higher latitudes, however, limited the recruitment of jack pine at the treeline ecotone. The number of reproductive black spruce trees increased with deeper soils, whereas the number of reproductive jack pine trees increased where soils were shallower. We examined the reproductive efficiency i.e., the number of seedlings recruited per reproductive tree, linking pre-fire reproductive maturity of recently burned stands and post-fire seedling recruitment (recorded up to 4 years after the fires) and found that a reproductive jack pine can recruit on average three times more seedlings than a reproductive black spruce. We suggest that the higher reproductive efficiency of jack pine can explain the greater resilience of this species to wildfire compared with black spruce. Overall, these results help link life history characteristics, such as reproductive maturity, to variation in post-fire recruitment of dominant serotinous conifers.

2021

DOI bib
Joint effects of climate, tree size, and year on annual tree growth derived from tree‐ring records of ten globally distributed forests
Kristina J. Anderson‐Teixeira, Valentine Herrmann, Christine R. Rollinson, Bianca Gonzalez, Erika Gonzalez‐Akre, Neil Pederson, Mario Alexánder, Craig D. Allen, Raquel Alfaro‐Sánchez, Tala Awada, Jennifer L. Baltzer, Patrick J. Baker, Joseph D. Birch, Sarayudh Bunyavejchewin, Paolo Cherubini, Stuart J. Davies, Cameron Dow, Ryan Helcoski, Jakub Kašpar, James A. Lutz, Ellis Q. Margolis, Justin T. Maxwell, Sean M. McMahon, Camille Piponiot, Sabrina E. Russo, Pavel Šamonil, Anastasia E. Sniderhan, Alan J. Tepley, Mart Vlam, Pieter A. Zuidema
Global Change Biology, Volume 28, Issue 1

Tree rings provide an invaluable long-term record for understanding how climate and other drivers shape tree growth and forest productivity. However, conventional tree-ring analysis methods were not designed to simultaneously test effects of climate, tree size, and other drivers on individual growth. This has limited the potential to test ecologically relevant hypotheses on tree growth sensitivity to environmental drivers and their interactions with tree size. Here, we develop and apply a new method to simultaneously model nonlinear effects of primary climate drivers, reconstructed tree diameter at breast height (DBH), and calendar year in generalized least squares models that account for the temporal autocorrelation inherent to each individual tree's growth. We analyze data from 3811 trees representing 40 species at 10 globally distributed sites, showing that precipitation, temperature, DBH, and calendar year have additively, and often interactively, influenced annual growth over the past 120 years. Growth responses were predominantly positive to precipitation (usually over ≥3-month seasonal windows) and negative to temperature (usually maximum temperature, over ≤3-month seasonal windows), with concave-down responses in 63% of relationships. Climate sensitivity commonly varied with DBH (45% of cases tested), with larger trees usually more sensitive. Trends in ring width at small DBH were linked to the light environment under which trees established, but basal area or biomass increments consistently reached maxima at intermediate DBH. Accounting for climate and DBH, growth rate declined over time for 92% of species in secondary or disturbed stands, whereas growth trends were mixed in older forests. These trends were largely attributable to stand dynamics as cohorts and stands age, which remain challenging to disentangle from global change drivers. By providing a parsimonious approach for characterizing multiple interacting drivers of tree growth, our method reveals a more complete picture of the factors influencing growth than has previously been possible.