Rebecca C. Rooney
2022
Quantifying relative contributions of source waters from a subalpine wetland to downstream water bodies
Julia M. Hathaway,
Cherie J. Westbrook,
Rebecca C. Rooney,
Richard M. Petrone,
Lindsey E. Langs
Hydrological Processes, Volume 36, Issue 9
Subalpine regions of the Canadian Rocky Mountains are expected to experience continued changes in hydrometeorological processes due to anthropogenically mediated climate warming. As a result, fresh water supplies are at risk as snowmelt periods occur earlier in the year, and glaciers contribute less annual meltwater, resulting in longer growing seasons and greater reliance on rainfall to generate runoff. In such environments, wetlands are potentially important components that control runoff processes, but due to their location and harsh climates their hydrology is not well studied. We used stable water isotopes of hydrogen and oxygen (δ2H and δ18O), coupled with MixSIAR, a Bayesian mixing model, to understand relative source water contributions and mixing within Burstall Wetland, a subalpine wetland (1900 m a.s.l.), and the larger Burstall Valley. These results were combined with climate data from the Burstall Valley to understand hydrometeorological controls on Burstall Wetland source water dynamics over spatiotemporal timescales. Our results show that the seasonal isotopic patterns within Burstall Wetland reflect greater reliance on snowmelt in spring and rainfall in the peak and post-growing season periods. We found a substantial degree of mixing between precipitation (rain and snow) and stored waters in the landscape, especially during the pre-growing season. These findings suggest that longer growing seasons in subalpine snow-dominated landscapes put wetlands at risk of significant water loss and increased evaporation rates potentially leading to periods of reduced runoff during the peak- growing season and in extreme cases, wetland dry out.
Using Stable Water Isotopes to Analyze Spatiotemporal Variability and Hydrometeorological Forcing in Mountain Valley Wetlands
Julia M. Hathaway,
Richard M. Petrone,
Cherie J. Westbrook,
Rebecca C. Rooney,
Lindsey E. Langs
Water, Volume 14, Issue 11
Wetlands in Montane and Subalpine Subregions are increasingly recognized as important hydrologic features that support ecosystem function. However, it is currently not clear how climate trends will impact wetland hydrological processes (e.g., evaporative fluxes) across spatiotemporal scales. Therefore, identifying the factors that influence wetland hydrologic response to climate change is an important step in understanding the sensitivity of these ecosystems to environmental change. We used stable water isotopes of hydrogen and oxygen (δ2H and δ18O), coupled with climate data, to determine the spatiotemporal variability in isotopic signatures of wetland source waters and understand the influence of evaporative fluxes on wetlands in the Kananaskis Valley. Our results show that the primary runoff generation mechanism changes throughout the growing season resulting in considerable mixing in wetland surface waters. We found that evaporative fluxes increased with decreasing elevation and that isotopic values became further removed from meteoric water lines during the late peak- and into the post-growing seasons. These findings suggest that a change in the water balance in favor of enhanced evaporation (due to a warmer and longer summer season than present) will not only lead to greater water loss from the wetlands themselves but may also reduce the water inputs from their catchments.
2018
Effect of climate change and mining on hydrological connectivity of surficial layers in the Athabasca Oil Sands Region
Mazda Kompanizare,
Richard M. Petrone,
Mahyar Shafii,
Derek T. Robinson,
Rebecca C. Rooney
Hydrological Processes, Volume 32, Issue 25
This is the peer reviewed version of the following article: Kompanizare M, Petrone RM, Shafii M, Robinson DT, Rooney RC. Effect of climate change and mining on hydrological connectivity of surficial layers in the Athabasca Oil Sands Region. Hydrological Processes. 2018;32:3698–3716. https://doi.org/10.1002/hyp.13292, which has been published in final form at https://doi.org/10.1002/hyp.13292. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions.