Robert G. Clark


2021

DOI bib
Synthesis of science: findings on Canadian Prairie wetland drainage
Helen M. Baulch, Colin J. Whitfield, Jared D. Wolfe, Nandita B. Basu, Angela Bedard‐Haughn, Kenneth Belcher, Robert G. Clark, Grant Ferguson, Masaki Hayashi, A. M. Ireson, Patrick Lloyd‐Smith, Phil Loring, John W. Pomeroy, Kevin Shook, Christopher Spence
Canadian Water Resources Journal / Revue canadienne des ressources hydriques, Volume 46, Issue 4

Extensive wetland drainage has occurred across the Canadian Prairies, and drainage activities are ongoing in many areas (Dahl 1990; Watmough and Schmoll 2007; Bartzen et al. 2010; Dahl 2014; Prairi...

2019

DOI bib
Antagonistic, synergistic and direct effects of land use and climate on Prairie wetland ecosystems: Ghosts of the past or present?
Chrystal Mantyka‐Pringle, Lionel Leston, Dave Messmer, Elvis Asong, Erin M. Bayne, Lauren E. Bortolotti, Gregory Sekulic, H. S. Wheater, David W. Howerter, Robert G. Clark
Diversity and Distributions, Volume 25, Issue 12

AIM: Wetland loss and degradation threaten biodiversity to an extent greater than most ecosystems. Science‐supported responses require understanding of interacting effects of land use and climate change on wetland biodiversity. LOCATION: Alberta, Canada. METHODS: We evaluated how current climate, climate change (as a ghost of the past), land use and wetland water quality relate to aquatic macroinvertebrates and birds. RESULTS: Climatic relationships and climate–land use interactions were observed on chironomid abundance, but not macroinvertebrate taxa richness (MTR) or odonate abundance, which responded to land use and water chemistry. Chironomid abundance was positively associated with cropland and negatively associated with total precipitation. Higher cropland cover and dissolved organic carbon synergistically interacted with total precipitation to affect chironomids. MTR was negatively related to salinity, yet greater area of non‐woody riparian vegetation attenuated salinity effects on MTR. Odonate abundance was negatively related to total phosphorus. Higher grassland cover also increased the negative relationship of total phosphorous to odonate abundance. Climatic relationships and climate–land use interactions were observed on bird species richness (BSR) and abundance of several bird functional groups. Higher BSR and abundances of several bird groups were positively related to average rainfall and greater warming temperatures over time. Area of non‐crop cover and wetlands was positively associated with most bird groups and BSR. Warming temperatures over time ameliorated the negative relationship of higher cropland or less shrubland on aerial insectivores and other bird groups. MAIN CONCLUSIONS: Climate patterns and climate change are as important as land use pressures with stronger impacts on birds. Climate change was more influential than current climate and provided novel empirical evidence that progressively warmer, wetter conditions is benefiting some bird groups, including aerial insectivores, a group of conservation concern. Riparian vegetation ameliorated the negative impacts of climate and water quality gradients on MTR and could mitigate global change impacts in agricultural systems.

2018

DOI bib
Prairie water: a global water futures project to enhance the resilience of prairie communities through sustainable water management
Christopher Spence, Jared D. Wolfe, Colin J. Whitfield, Helen M. Baulch, N. B. Basu, Angela Bedard‐Haughn, Kenneth Belcher, Robert G. Clark, Grant Ferguson, Masaki Hayashi, Karsten Liber, J. McDonnell, Christy A. Morrissey, John W. Pomeroy, Maureen G. Reed, Graham Strickert
Canadian Water Resources Journal / Revue canadienne des ressources hydriques, Volume 44, Issue 2

‘I would walk to the end of the street and out over the prairie with the clickety grasshoppers bunging in arcs ahead of me and I could hear the hum and twang of the wind in the great prairie harp o...