Ronald E. Stewart


2023

DOI bib
The Occurrence of Near‐0°C Surface Air Temperatures in the Current and Pseudo‐Global Warming Future Over Southern Canada
Ronald E. Stewart, Z. Liu, Julie M. Thériault, C. J. Ruman
Journal of Geophysical Research: Atmospheres, Volume 128, Issue 6

Abstract Temperatures near 0°C represent a critical threshold for many environmental processes and socio‐economic activities. This study examines surface air temperatures ( T ) near 0°C (−2°C ≤ T ≤ 2°C) across much of southern Canada over a 13 year period (October 2000–September 2013). It utilized hourly data from 39 weather stations and from 4‐km resolution Weather Research and Forecasting model simulations that were both a retrospective simulation as well as a pseudo‐global warming simulation applicable near the end of the 21st century. Average annual occurrences of near‐0°C conditions increase by a relatively small amount of 5.1% from 985 hr in the current climate to 1,035 hr within the future one. Near‐0°C occurrences with precipitation vary from <5% to approximately 50% of these values. Near‐0°C occurrences are sometimes higher than values of neighboring temperatures. These near‐0°C peaks in temperature distributions can occur in both the current and future climate, in only one, or in neither. Only 4.3% of southern Canada is not associated with a near‐0°C peak and 65.8% is associated with a near‐0°C peak in both climates. It is inferred that latent heat exchanges from the melting and freezing of, for example, precipitation and the snowpack contribute significantly to some of these findings.

DOI bib
Adhering Solid Precipitation in the Current and Pseudo-Global Warming Future Climate over the Canadian Provinces of Manitoba and Saskatchewan
Ronald E. Stewart, Zhuo Liu, Dylan Painchaud-Niemi, John Hanesiak, Julie M. Thériault
Atmosphere, Volume 14, Issue 2

Solid precipitation falling near 0 °C, mainly snow, can adhere to surface features and produce major impacts. This study is concerned with characterizing this precipitation over the Canadian Prairie provinces of Manitoba and Saskatchewan in the current (2000–2013) and pseudo-global warming future climate, with an average 5.9 °C temperature increase, through the use of high resolution (4 km) model simulations. On average, simulations in the current climate suggest that this precipitation occurs within 11 events per year, lasting 33.6 h in total and producing 27.5 mm melted equivalent, but there are wide spatial variations that are partly due to enhancements arising from its relatively low terrain. Within the warmer climate, average values generally increase, and spatial patterns shift somewhat. This precipitation consists of four categories covering its occurrence just below and just above a wet-bulb temperature of 0 °C, and with or without liquid precipitation. It generally peaks in March or April, as well as in October, and these peaks move towards mid-winter by approximately one month within the warmer climate. Storms producing this precipitation generally produce winds with a northerly component during or shortly after the precipitation; these winds contribute to further damage. Overall, this study has determined the features of and expected changes to adhering precipitation across this region.

DOI bib
Atmospheric and surface observations during the Saint John River Experiment on Cold Season Storms (SAJESS)
Hadleigh D. Thompson, Julie M. Thériault, Stephen J. Déry, Ronald E. Stewart, Dominique Boisvert, Lisa Rickard, Nicolas Leroux, Matteo Colli, Vincent Vionnet
Earth System Science Data Discussions, Volume 2023

Abstract. The amount and phase of cold season precipitation accumulating in the upper Saint John River basin are critical factors in determining spring runoff, ice-jams, and flooding in downstream communities. To study the impact of winter and spring storms on the snowpack in the upper Saint John River (SJR) basin, the Saint John River Experiment on Cold Season Storms (SAJESS) utilized meteorological instrumentation, upper air soundings, human observations, and hydrometeor macrophotography during winter/spring 2020–21. Here, we provide an overview of the SAJESS study area, field campaign, and existing data networks surrounding the upper SJR basin. Initially, meteorological instrumentation was co-located with an Environment and Climate Change Canada station near Edmundston, New Brunswick, in early December 2020. This was followed by an intensive observation period that involved manual observations, upper-air soundings, a multi-angle snowflake camera, macrophotography of solid hydrometeors, and advanced automated instrumentation throughout March and April 2021. The resulting datasets include optical disdrometer size and velocity distributions of hydrometeors, micro rain radar output, near-surface meteorological observations, and wind speed, temperature, pressure and precipitation amounts from a K63 Hotplate precipitation gauge, the first one operating in Canada. These data are publicly available from the Federated Research Data Repository at https://doi.org/10.20383/103.0591 (Thompson et al., 2022). We also include a synopsis of the data management plan and data processing, and a brief assessment of the rewards and challenges of utilizing community volunteers for hydro-meteorological citizen science.

DOI bib
Characteristics of Rain-Snow Transitions Over the Canadian Rockies and their Changes in Warmer Climate Conditions
Julie M. Thériault, Nicolas Leroux, Obert Tchuem Tchuente, Ronald E. Stewart
Atmosphere-Ocean

The southern Canadian Rockies are prone to extreme precipitation that often leads to high streamflow, deep snowpacks, and avalanche risks. Many of these precipitation events are associated with rain–snow transitions, which are highly variable in time and space due to the complex topography. A warming climate will certainly affect these extremes and the associated rain–snow transitions. The goal of this study is to investigate the characteristics and variability of rain–snow transitions aloft and how they will change in the future. Weather Research and Forecasting (WRF) simulations were conducted from 2000 to 2013 and these were repeated in a warmer pseudo-global warming (PGW) future. Rain–snow transitions occurred aloft throughout the year over the southern Canadian Rockies, but their elevations and depths were highly variable, especially across the continental divide. In PGW conditions, with future air temperatures up to 4–5°C higher on average over the Canadian Rockies, rain–snow transitions are projected to occur more often throughout the year, except during summer. The near-0°C conditions associated with rain–snow transitions are expected to increase in elevation by more than 500 m, resulting in more rain reaching the surface. Overall, this study illustrates the variability of rain–snow transitions, which often impact the location of the snowline. This study also demonstrates the non-uniform changes under PGW conditions, due in part to differences in the types of weather patterns that generate rain–snow transitions across the region.

2022

DOI bib
The Severe Multi-Day October 2019 Snow Storm Over Southern Manitoba, Canada
John Hanesiak, Ronald E. Stewart, Dylan Painchaud-Niemi, Shawn M. Milrad, George Liu, Michael Vieira, Julie M. Thériault, Mélissa Cholette, Kyle Ziolkowski
Atmosphere-Ocean, Volume 60, Issue 2

ABSTRACT A devastating storm struck southern Manitoba, Canada on 10–13 October 2019, producing a large region of mainly sticky and wet snow. Accumulations reached 75 cm, wind gusts exceeded 100 km h−1, and surface temperature (T) remained near 0°C (−1°C ≤ T ≤ 1°C) for up to 88 h. It produced the largest October snowfall and was the earliest to produce at least 20 cm since 1872 in Winnipeg. These factors led to unparalleled damage and power restoration challenges for Manitoba Hydro and, with leaves still largely on vegetation, the most damaging storm to Winnipeg’s trees ever recorded. The storm’s track was uncommon, and produced elevated convection related to buoyancy-driven instability and conditional symmetric instability (CSI), with a moist absolutely unstable layer (MAUL) near 500 hPa. Instabilities were released via lift through lower-tropospheric warm advection and frontogenesis, differential cyclonic vorticity advection, and jet streak dynamics. Precipitation bands, elevated convection, and lake effect snow bands enhanced local snowfall. Snow adhering to structures was not always wet but, when present, it sometimes occurred because of incomplete freezing of particles partially melted aloft in a near-surface (<100 m deep) inversion. Although other storms over the historical record have produced a similar combination of severe precipitation, temperature and wind conditions, none have done this for such a long period.

DOI bib
Storms and Precipitation Across the continental Divide Experiment (SPADE)
Julie M. Thériault, Nicolas Leroux, Ronald E. Stewart, André Bertoncini, Stephen J. Déry, John W. Pomeroy, Hadleigh D. Thompson, Hilary M. Smith, Zen Mariani, Aurélie Desroches-Lapointe, S. G. Mitchell, Juris Almonte
Bulletin of the American Meteorological Society, Volume 103, Issue 11

Abstract The Canadian Rockies are a triple-continental divide, whose high mountains are drained by major snow-fed and rain-fed rivers flowing to the Pacific, Atlantic, and Arctic Oceans. The objective of the April–June 2019 Storms and Precipitation Across the continental Divide Experiment (SPADE) was to determine the atmospheric processes producing precipitation on the eastern and western sides of the Canadian Rockies during springtime, a period when upslope events of variable phase dominate precipitation on the eastern slopes. To do so, three observing sites across the divide were instrumented with advanced meteorological sensors. During the 13 observed events, the western side recorded only 25% of the eastern side’s precipitation accumulation, rainfall occurred rather than snowfall, and skies were mainly clear. Moisture sources and amounts varied markedly between events. An atmospheric river landfall in California led to moisture flowing persistently northward and producing the longest duration of precipitation on both sides of the divide. Moisture from the continental interior always produced precipitation on the eastern side but only in specific conditions on the western side. Mainly slow-falling ice crystals, sometimes rimed, formed at higher elevations on the eastern side (>3 km MSL), were lifted, and subsequently drifted westward over the divide during nonconvective storms to produce rain at the surface on the western side. Overall, precipitation generally crossed the divide in the Canadian Rockies during specific spring-storm atmospheric conditions although amounts at the surface varied with elevation, condensate type, and local and large-scale flow fields.

2021

DOI bib
Assessing past and future hazardous freezing rain and wet snow events in Manitoba, Canada using a pseudo-global warming approach
Brock Tropea, Ronald E. Stewart
Atmospheric Research, Volume 259

Freezing precipitation, in the form of freezing rain, freezing drizzle, and/or wet snow, can damage transportation networks, infrastructure, and vegetation. Ten events with freezing precipitation (including freezing rain and wet snow) over the province of Manitoba, Canada were examined using surface observational datasets, reanalysis products and 4-km resolution Weather Research and Forecasting (WRF) products that were both a retrospective control (CTRL) simulation as well as a pseudo-global warming (PGW) simulation. All events tracked to the south and/or east of Manitoba and most (8 of 10) events were associated with a consistent large scale pattern of extratropical cyclone with 500 hPa trough, low surface pressure center nearby, and an atmospheric river. Local factors, such as the 400 m elevated terrain of Riding Mountain, influenced 2 events mainly by altering surface temperature to be favorable for freezing precipitation. These events in the PGW simulation occurred 40–120 km farther north on average, with freezing rain generally being enhanced and wet snow generally being reduced, although wet snow was introduced into events which originally only had freezing rain. This study further showed that power lines aligned west to east, perpendicular to the strongest winds, are most susceptible to the consequences of icing and accretion within the current climate as well as the thermodynamically forced future one. • Freezing rain, wet snow and their mixtures lead to major impacts in Manitoba, Canada. • Ten historic freezing precipitation events over this area are examined in detail. • Freezing precipitation is dramatically altered by the area's low topographic features. • Pseudo-global warming is assumed to examine future freezing precipitation. • With this warming, freezing precipitation types and their locations are altered.

DOI bib
Summary and synthesis of Changing Cold Regions Network (CCRN) research in the interior of western Canada – Part 2: Future change in cryosphere, vegetation, and hydrology
C. M. DeBeer, H. S. Wheater, John W. Pomeroy, Alan Barr, Jennifer L. Baltzer, Jill F. Johnstone, M. R. Turetsky, Ronald E. Stewart, Masaki Hayashi, Garth van der Kamp, Shawn J. Marshall, Elizabeth M. Campbell, Philip Marsh, Sean K. Carey, William L. Quinton, Yanping Li, Saman Razavi, Aaron Berg, Jeffrey J. McDonnell, Christopher Spence, Warren Helgason, A. M. Ireson, T. Andrew Black, Mohamed Elshamy, Fuad Yassin, Bruce Davison, Allan Howard, Julie M. Thériault, Kevin Shook, M. N. Demuth, Alain Pietroniro
Hydrology and Earth System Sciences, Volume 25, Issue 4

Abstract. The interior of western Canada, like many similar cold mid- to high-latitude regions worldwide, is undergoing extensive and rapid climate and environmental change, which may accelerate in the coming decades. Understanding and predicting changes in coupled climate–land–hydrological systems are crucial to society yet limited by lack of understanding of changes in cold-region process responses and interactions, along with their representation in most current-generation land-surface and hydrological models. It is essential to consider the underlying processes and base predictive models on the proper physics, especially under conditions of non-stationarity where the past is no longer a reliable guide to the future and system trajectories can be unexpected. These challenges were forefront in the recently completed Changing Cold Regions Network (CCRN), which assembled and focused a wide range of multi-disciplinary expertise to improve the understanding, diagnosis, and prediction of change over the cold interior of western Canada. CCRN advanced knowledge of fundamental cold-region ecological and hydrological processes through observation and experimentation across a network of highly instrumented research basins and other sites. Significant efforts were made to improve the functionality and process representation, based on this improved understanding, within the fine-scale Cold Regions Hydrological Modelling (CRHM) platform and the large-scale Modélisation Environmentale Communautaire (MEC) – Surface and Hydrology (MESH) model. These models were, and continue to be, applied under past and projected future climates and under current and expected future land and vegetation cover configurations to diagnose historical change and predict possible future hydrological responses. This second of two articles synthesizes the nature and understanding of cold-region processes and Earth system responses to future climate, as advanced by CCRN. These include changing precipitation and moisture feedbacks to the atmosphere; altered snow regimes, changing balance of snowfall and rainfall, and glacier loss; vegetation responses to climate and the loss of ecosystem resilience to wildfire and disturbance; thawing permafrost and its influence on landscapes and hydrology; groundwater storage and cycling and its connections to surface water; and stream and river discharge as influenced by the various drivers of hydrological change. Collective insights, expert elicitation, and model application are used to provide a synthesis of this change over the CCRN region for the late 21st century.

2020

DOI bib
Near-0 °C surface temperature and precipitation type patterns across Canada
Éva Mekis, Ronald E. Stewart, Julie M. Thériault, Bohdan Kochtubajda, Barrie Bonsal, Zhuo Liu
Hydrology and Earth System Sciences, Volume 24, Issue 4

Abstract. The 0 ∘C temperature threshold is critical for many meteorological and hydrological processes driven by melting and freezing in the atmosphere, surface, and sub-surface and by the associated precipitation varying between rain, freezing rain, wet snow, and snow. This threshold is especially important in cold regions such as Canada, because it is linked with freeze–thaw, snowmelt, and permafrost. This study develops a Canada-wide perspective on near-0 ∘C conditions using hourly surface temperature and precipitation type observations from 92 climate stations for the period from 1981 to 2011. In addition, nine stations from various climatic regions are selected for further analysis. Near-0 ∘C conditions are defined as periods when the surface temperature is between −2 and 2 ∘C. Near-0 ∘C conditions occur often across all regions of the country, although the annual number of days and hours and the duration of these events varies dramatically. Various types of precipitation (e.g., rain, freezing rain, wet snow, and ice pellets) sometimes occur with these temperatures. Near-0 ∘C conditions and the reported precipitation type occurrences tend to be higher in Atlantic Canada, although high values also occur in other regions. Trends of most temperature-based and precipitation-based indicators show little or no change despite a systematic warming in annual surface temperatures over Canada. Over the annual cycle, near-0 ∘C temperatures and precipitation often exhibit a pattern: short durations occur around summer, driven by the diurnal cycle, and a tendency toward longer durations around winter, associated with storms. There is also a tendency for near-0 ∘C surface temperatures to occur more often than expected relative to other temperature windows at some stations due, at least in part, to diabatic cooling and heating that take place with melting and freezing, respectively, in the atmosphere and at the surface.

DOI bib
Historical and Projected Changes to the Stages and Other Characteristics of Severe Canadian Prairie Droughts
Barrie Bonsal, Lu Zhuo, Elaine Wheaton, Ronald E. Stewart
Water, Volume 12, Issue 12

Large-area, long-duration droughts are among Canada’s costliest natural disasters. A particularly vulnerable region includes the Canadian Prairies where droughts have, and are projected to continue to have, major impacts. However, individual droughts often differ in their stages such as onset, growth, persistence, retreat, and duration. Using the Standardized Precipitation Evapotranspiration Index, this study assesses historical and projected future changes to the stages and other characteristics of severe drought occurrence across the agricultural region of the Canadian Prairies. Ten severe droughts occurred during the 1900–2014 period with each having unique temporal and spatial characteristics. Projected changes from 29 global climate models (GCMs) with three representative concentration pathways reveal an increase in severe drought occurrence, particularly toward the end of this century with a high emissions scenario. For the most part, the overall duration and intensity of future severe drought conditions is projected to increase mainly due to longer persistence stages, while growth and retreat stages are generally shorter. Considerable variability exists among individual GCM projections, including their ability to simulate observed severe drought characteristics. This study has increased understanding in potential future changes to a little studied aspect of droughts, namely, their stages and associated characteristics. This knowledge can aid in developing future adaptation strategies.

2019

DOI bib
A Review and Synthesis of Future Earth System Change in theInterior of Western Canada: Part I – Climate and Meteorology
Ronald E. Stewart, Kit K. Szeto, Barrie Bonsal, John Hanesiak, Bohdan Kochtubajda, Yanping Li, Julie M. Thériault, C. M. DeBeer, Benita Y. Tam, Zhenhua Li, Lu Zhuo, Jennifer Bruneau, Sébastien Marinier, Dominic Matte

Abstract. The Interior of Western Canada, up to and including the Arctic, has experienced rapid change in its climate, hydrology, cryosphere and ecosystems and this is expected to continue. Although there is general consensus that warming will occur in the future, many critical issues remain. In this first of two articles, attention is placed on atmospheric-related issues that range from large scales down to individual precipitation events. Each of these is considered in terms of expected change organized by season and utilizing climate scenario information as well as thermodynamically-driven future climatic forcing simulations. Large scale atmospheric circulations affecting this region are generally projected to become stronger in each season and, coupled with warming temperatures, lead to enhancements of numerous water-related and temperature-related extremes. These include winter snowstorms, freezing rain, drought as well as atmospheric forcing of spring floods although not necessarily summer convection. Collective insights of these atmospheric findings are summarized in a consistent, connected physical framework.

DOI bib
Assessment of Near 0 °C Temperature and Precipitation Characteristicsacross Canada
Éva Mekis, Ronald E. Stewart, Julie M. Thériault, Bohdan Kochtubajda, Barrie Bonsal, Zhuo Liu

Abstract. The 0 °C temperature threshold is critical to many meteorological and hydrological processes driven by melting and freezing in the atmosphere, surface and sub-surface and by the associated precipitation varying between rain, freezing rain, wet snow and snow. This threshold, linked with freeze-thaw, is especially important in cold regions such as Canada. This study develops a Canada-wide perspective on near 0 °C conditions with a particular focus on the occurrence of its associated precipitation. Since this analysis requires hourly values of surface temperature and precipitation type observations, it was limited to 92 stations over the 1981–2011 period. In addition, nine stations representative of various climatic regions are selected for further analysis. Near 0 °C conditions are defined as periods when the surface temperature is between −2 °C and 2 °C. Near 0 °C conditions occur often across all regions of the country although the annual number of days and hours and the duration of these events varies dramatically. Various forms of precipitation (including rain, freezing rain, wet snow and ice pellets) are sometimes linked with these temperatures with highest fractions tending to occur in Atlantic Canada. Trends of most temperature-based and precipitation-based indicators show little or no change despite a systematic warming in annual temperatures. Over the annual cycle, near 0 °C temperatures and precipitation often exhibit a pattern with short durations near summer driven by the diurnal cycle, while longer durations tend to occur more towards winter associated with storms. There is also a tendency for near 0 °C temperatures to occur more often than expected relative to other temperature windows; due at least in part to diabatic cooling and heating occurring with melting and freezing, respectively, in the atmosphere and at the surface.

DOI bib
Precipitation transition regions over the southern Canadian Cordillera during January–April 2010 and under a pseudo-global-warming assumption
Juris Almonte, Ronald E. Stewart
Hydrology and Earth System Sciences, Volume 23, Issue 9

Abstract. The occurrence of various types of winter precipitation is an important issue over the southern Canadian Cordillera. This issue is examined from January to April of 2010 by exploiting the high-resolution Weather Research and Forecasting (WRF) model Version 3.4.1 dataset that was used to simulate both a historical reanalysis-driven (control – CTRL) and a pseudo-global-warming (PGW) experiment (Liu et al., 2016). Transition regions, consisting of both liquid and solid precipitation or liquid precipitation below 0 ∘C, occurred on 93 % and 94 % of the days in the present and PGW future, respectively. This led to accumulated precipitation within the transition region increasing by 27 % and was associated with a rise in its average elevation by 374 m over the Coast Mountains and Insular Mountains and by 240 m over the Rocky Mountains and consequently to an eastward shift towards the higher terrain of the Rocky Mountains. Transition regions comprised of only rain and snow were most common under both the CTRL and PGW simulations, although all seven transition region categories occurred. Transition region changes would enhance some of the factors leading to avalanches and would also impact ski resort operations.

DOI bib
An Assessment of Surface and Atmospheric Conditions Associated with the Extreme 2014 Wildfire Season in Canada’s Northwest Territories
Bohdan Kochtubajda, Ronald E. Stewart, Mike D. Flannigan, Barrie Bonsal, Charles Cuell, Curtis Mooney
Atmosphere-Ocean, Volume 57, Issue 1

Weather and climate are major factors influencing worldwide wildfire activity. This study assesses surface and atmospheric conditions associated with the 2014 extreme wildfires in the Northwest Ter...

DOI bib
Summary and synthesis of Changing Cold Regions Network (CCRN) research in the interior of western Canada – Part 1: Projected climate and meteorology
Ronald E. Stewart, Kit K. Szeto, Barrie Bonsal, John Hanesiak, Bohdan Kochtubajda, Yanping Li, Julie M. Thériault, C. M. DeBeer, Benita Y. Tam, Zhenhua Li, Zhuo Liu, Jennifer Bruneau, Patrick Duplessis, Sébastien Marinier, Dominic Matte
Hydrology and Earth System Sciences, Volume 23, Issue 8

Abstract. The interior of western Canada, up to and including the Arctic, has experienced rapid change in its climate, hydrology, cryosphere, and ecosystems, and this is expected to continue. Although there is general consensus that warming will occur in the future, many critical issues remain. In this first of two articles, attention is placed on atmospheric-related issues that range from large scales down to individual precipitation events. Each of these is considered in terms of expected change organized by season and utilizing mainly “business-as-usual” climate scenario information. Large-scale atmospheric circulations affecting this region are projected to shift differently in each season, with conditions that are conducive to the development of hydroclimate extremes in the domain becoming substantially more intense and frequent after the mid-century. When coupled with warming temperatures, changes in the large-scale atmospheric drivers lead to enhancements of numerous water-related and temperature-related extremes. These include winter snowstorms, freezing rain, drought, forest fires, as well as atmospheric forcing of spring floods, although not necessarily summer convection. Collective insights of these atmospheric findings are summarized in a consistent, connected physical framework.

2018

DOI bib
Precipitation characteristics and associated weather conditions on the eastern slopes of the Canadian Rockies during March–April 2015
Julie M. Thériault, Ida Hung, Paul Vaquer, Ronald E. Stewart, John W. Pomeroy
Hydrology and Earth System Sciences, Volume 22, Issue 8

Abstract. Precipitation events that bring rain and snow to the Banff–Calgary area of Alberta are a critical aspect of the region's water cycle and can lead to major flooding events such as the June 2013 event that was the second most costly natural disaster in Canadian history. Because no special atmospheric-oriented observations of these events have been made, a field experiment was conducted in March and April 2015 in Kananaskis, Alberta, to begin to fill this gap. The goal was to characterize and better understand the formation of the precipitation at the surface during spring 2015 at a specific location in the Kananaskis Valley. Within the experiment, detailed measurements of precipitation and weather conditions were obtained, a vertically pointing Doppler radar was deployed and weather balloons were released. Although 17 precipitation events occurred, this period was associated with much less precipitation than normal (−35 %) and above-normal temperatures (2.5 ∘C). Of the 133 h of observed precipitation, solid precipitation occurred 71 % of the time, mixed precipitation occurred 9 % and rain occurred 20 %. An analysis of 17 504 precipitation particles from 1181 images showed that a wide variety of crystals and aggregates occurred and approximately 63 % showed signs of riming. This was largely independent of whether flows aloft were upslope (easterly) or downslope (westerly). In the often sub-saturated surface conditions, hydrometeors containing ice occurred at temperatures as high as 9 ∘C. Radar structures aloft were highly variable with reflectivity sometimes >30 dBZe and Doppler velocity up to −1 m s−1, which indicates upward motion of particles within ascending air masses. Precipitation was formed in this region within cloud fields sometimes having variable structures and within which supercooled water at least sometimes existed to produce accreted particles massive enough to reach the surface through the relatively dry sub-cloud region.

2017

DOI bib
Characteristics, atmospheric drivers and occurrence patterns of freezing precipitation and ice pellets over the Prairie Provinces and Arctic Territories of Canada: 1964–2005
Bohdan Kochtubajda, Curtis Mooney, Ronald E. Stewart
Atmospheric Research, Volume 191

Abstract Freezing precipitation and ice pellet events on the Canadian Prairies and Arctic territories of Canada often lead to major disruptions to air and ground transportation, damage power grids and prevent arctic caribou and other animals from accessing the plants and lichen they depend on for survival. In a warming climate, these hazards and associated impacts will continue to happen, although their spatial and temporal characteristics may vary. In order to address these issues, the occurrence of freezing rain, freezing drizzle, and ice pellets from 1964 to 2005 is examined using hourly weather observations at 27 manned 24 h weather stations across the different climatic regions of the Prairie Provinces and Arctic Territories of Canada. Because of the enormous size of the area and its diverse climatic regions, many temporal and spatial differences in freezing precipitation and ice pellet characteristics occur. The 12 most widespread freezing rain events over the study area are associated with only two atmospheric patterns with one linked to strong warm advection between low and high pressure centres and the other pattern associated with chinooks occurring east of the Rocky Mountains. Given the annual patterns of freezing rain occurrence found in this study, it is proposed that a maximum of five regimes exist and three occur within the Prairies and Arctic.

DOI bib
A Numerical Study of the June 2013 Flood-Producing Extreme Rainstorm over Southern Alberta
Yanping Li, Kit K. Szeto, Ronald E. Stewart, Julie M. Thériault, Liang Chen, Bohdan Kochtubajda, Anthony Liu, Sudesh Boodoo, Ron Goodson, Curtis Mooney, Sopan Kurkute
Journal of Hydrometeorology, Volume 18, Issue 8

Abstract A devastating, flood-producing rainstorm occurred over southern Alberta, Canada, from 19 to 22 June 2013. The long-lived, heavy rainfall event was a result of complex interplays between topographic, synoptic, and convective processes that rendered an accurate simulation of this event a challenging task. In this study, the Weather Research and Forecasting (WRF) Model was used to simulate this event and was validated against several observation datasets. Both the timing and location of the model precipitation agree closely with the observations, indicating that the WRF Model is capable of reproducing this type of severe event. Sensitivity tests with different microphysics schemes were conducted and evaluated using equitable threat and bias frequency scores. The WRF double-moment 6-class microphysics scheme (WDM6) generally performed better when compared with other schemes. The application of a conventional convective/stratiform separation algorithm shows that convective activity was dominant during the early stages, then evolved into predominantly stratiform precipitation later in the event. The HYSPLIT back-trajectory analysis and regional water budget assessments using WRF simulation output suggest that the moisture for the precipitation was mainly from recycling antecedent soil moisture through evaporation and evapotranspiration over the Canadian Prairies and the U.S. Great Plains. This analysis also shows that a small fraction of the moisture can be traced back to the northeastern Pacific, and direct uptake from the Gulf of Mexico was not a significant source in this event.

2016

DOI bib
The June 2013 Alberta Catastrophic Flooding Event: Part 1-Climatological aspects and hydrometeorological features
Anling Liu, Curtis Mooney, Kit K. Szeto, Julie M. Thériault, Bohdan Kochtubajda, Ronald E. Stewart, Sudesh Boodoo, Ron Goodson, Yanping Li, John W. Pomeroy
Hydrological Processes, Volume 30, Issue 26

In June 2013, excessive rainfall associated with an intense weather system triggered severe flooding in southern Alberta, which became the costliest natural disaster in Canadian history. This article provides an overview of the climatological aspects and large-scale hydrometeorological features associated with the flooding event based upon information from a variety of sources, including satellite data, upper air soundings, surface observations and operational model analyses. The results show that multiple factors combined to create this unusually severe event. The event was characterized by a slow-moving upper level low pressure system west of Alberta, blocked by an upper level ridge, while an associated well-organized surface low pressure system kept southern Alberta, especially the eastern slopes of the Rocky Mountains, in continuous precipitation for up to two days. Results from air parcel trajectory analysis show that a significant amount of the moisture originated from the central Great Plains, transported into Alberta by a southeasterly low level jet. The event was first dominated by significant thunderstorm activity, and then evolved into continuous precipitation supported by the synoptic-scale low pressure system. Both the thunderstorm activity and upslope winds associated with the low pressure system produced large rainfall amounts. A comparison with previous similar events occurring in the same region suggests that the synoptic-scale features associated with the 2013 rainfall event were not particularly intense; however, its storm environment was the most convectively unstable. The system also exhibited a relatively high freezing level, which resulted in rain, rather than snow, mainly falling over the still snow-covered mountainous areas. Melting associated with this rain-on-snow scenario likely contributed to downstream flooding. Furthermore, above-normal snowfall in the preceding spring helped to maintain snow in the high-elevation areas, which facilitated the rain-on-snow event.