S. R. Sobie


2021

DOI bib
Climate Model Projections for Canada: A Comparison of CMIP5 and CMIP6
S. R. Sobie, Francis W. Zwiers, Charles L. Curry
Atmosphere-Ocean, Volume 59, Issue 4-5

ABSTRACT Recent studies have identified stronger warming in the latest generation of climate model simulations globally, and the same is true for projected changes in Canada. This study examines differences for Canada and six sub-regions between simulations from the latest Sixth Coupled Model Intercomparison Project (CMIP6) and its predecessor CMIP5. Ensembles from both experiments are assessed using a set of derived indices calculated from daily precipitation and temperature, with projections compared at fixed future time intervals and fixed levels of global temperature change. For changes calculated at fixed time intervals most temperature indices display higher projected changes in CMIP6 than CMIP5 for most sub-regions, while greater precipitation changes in CMIP6 occur mainly in extreme precipitation indices. When future projections are calculated at fixed levels of global average temperature increase, the size and spread of differences for future projected changes between CMIP6 and CMIP5 are substantially reduced for most indices. Temperature scaling behaviour, or the regional response to increasing global temperatures, is similar in both ensembles, with annual temperature anomalies for Canada and its sub-regions increasing at between 1.5 and 2.5 times the rate of increase globally, depending on the region. The CMIP6 ensemble projections exhibit modestly stronger scaling behaviour for temperature anomalies in northern Canada, as well as for certain indices of moderate and extreme events. Such temperature scaling differences persist even if anomalously warm CMIP6 global climate models are omitted. Comparing the mean and variance of future projections for Canada in CMIP5 and CMIP6 simulations from the same modelling centre suggests CMIP6 models are significantly warmer in Canada than CMIP5 models at the same level of forcing, with some evidence that internal temperature variability in CMIP6 is reduced compared with CMIP5.

2018

DOI bib
Indices of Canada’s future climate for general and agricultural adaptation applications
Guilong Li, Xuebin Zhang, Alex J. Cannon, Trevor Q. Murdock, S. R. Sobie, Francis W. Zwiers, Kevin Anderson, Budong Qian
Climatic Change, Volume 148, Issue 1-2

This study evaluates regional-scale projections of climate indices that are relevant to climate change impacts in Canada. We consider indices of relevance to different sectors including those that describe heat conditions for different crop types, temperature threshold exceedances relevant for human beings and ecological ecosystems such as the number of days temperatures are above certain thresholds, utility relevant indices that indicate levels of energy demand for cooling or heating, and indices that represent precipitation conditions. Results are based on an ensemble of high-resolution statistically downscaled climate change projections from 24 global climate models (GCMs) under the RCP2.6, RCP4.5, and RCP8.5 emissions scenarios. The statistical downscaling approach includes a bias-correction procedure, resulting in more realistic indices than those computed from the original GCM data. We find that the level of projected changes in the indices scales well with the projected increase in the global mean temperature and is insensitive to the emission scenarios. At the global warming level about 2.1 °C above pre-industrial (corresponding to the multi-model ensemble mean for 2031–2050 under the RCP8.5 scenario), there is almost complete model agreement on the sign of projected changes in temperature indices for every region in Canada. This includes projected increases in extreme high temperatures and cooling demand, growing season length, and decrease in heating demand. Models project much larger changes in temperature indices at the higher 4.5 °C global warming level (corresponding to 2081–2100 under the RCP8.5 scenario). Models also project an increase in total precipitation, in the frequency and intensity of precipitation, and in extreme precipitation. Uncertainty is high in precipitation projections, with the result that models do not fully agree on the sign of changes in most regions even at the 4.5 °C global warming level.