Salvatore Grimaldi


2022

DOI bib
Continuous hydrologic modelling for small and ungauged basins: A comparison of eight rainfall models for sub-daily runoff simulations
Salvatore Grimaldi, Elena Volpi, Andreas Langousis, Simon Michael Papalexiou, Davide Luciano De Luca, Rodolfo Piscopia, Sofia D. Nerantzaki, Georgia Papacharalampous, Andrea Petroselli‬
Journal of Hydrology, Volume 610

• Eight rainfall models are compared as input for a simplified continuous hydrologic model. • The comparison is performed by investigating the simulated runoff properties. • Results suggest that all rainfall models lead to realistic runoff time series. • Four models will be further optimized to be adapted for data-scarce applications. Continuous hydrologic modelling is a natural evolution of the event-based design approach in modern hydrology. It improves the rainfall-runoff transformation and provides the practitioner with more effective hydrological output information for risk assessment. However, this approach is still not widely adopted, mainly because the choice of the most appropriate rainfall simulation model (which is the core of continuous frameworks) for the specific aim of risk analysis has not been sufficiently investigated. In this paper, we test eight rainfall models by evaluating the performances of the simulated rainfall time series when used as input for a simplified continuous rainfall-runoff model, the COSMO4SUB, which is particularly designed for small and ungauged basins. The comparison confirms the capability of all models to provide realistic flood events and allows identifying the models to be further improved and tailored for data-scarce hydrological risk applications. The suggested framework is transferable to any catchment while different hydrologic and rainfall models can be used.

2021

DOI bib
Global-scale massive feature extraction from monthly hydroclimatic time series: Statistical characterizations, spatial patterns and hydrological similarity
Georgia Papacharalampous, Hristos Tyralis, Simon Michael Papalexiou, Andreas Langousis, Sina Khatami, Elena Volpi, Salvatore Grimaldi
Science of The Total Environment, Volume 767

Hydroclimatic time series analysis focuses on a few feature types (e.g., autocorrelations, trends, extremes), which describe a small portion of the entire information content of the observations. Aiming to exploit a larger part of the available information and, thus, to deliver more reliable results (e.g., in hydroclimatic time series clustering contexts), here we approach hydroclimatic time series analysis differently, i.e., by performing massive feature extraction. In this respect, we develop a big data framework for hydroclimatic variable behaviour characterization. This framework relies on approximately 60 diverse features and is completely automatic (in the sense that it does not depend on the hydroclimatic process at hand). We apply the new framework to characterize mean monthly temperature, total monthly precipitation and mean monthly river flow. The applications are conducted at the global scale by exploiting 40-year-long time series originating from over 13 000 stations. We extract interpretable knowledge on seasonality, trends, autocorrelation, long-range dependence and entropy, and on feature types that are met less frequently. We further compare the examined hydroclimatic variable types in terms of this knowledge and, identify patterns related to the spatial variability of the features. For this latter purpose, we also propose and exploit a hydroclimatic time series clustering methodology. This new methodology is based on Breiman's random forests. The descriptive and exploratory insights gained by the global-scale applications prove the usefulness of the adopted feature compilation in hydroclimatic contexts. Moreover, the spatially coherent patterns characterizing the clusters delivered by the new methodology build confidence in its future exploitation...

2019

DOI bib
Twenty-three unsolved problems in hydrology (UPH) – a community perspective
Günter Blöschl, M. F. Bierkens, António Chambel, Christophe Cudennec, Georgia Destouni, Aldo Fiori, J. W. Kirchner, Jeffrey J. McDonnell, H. H. G. Savenije, Murugesu Sivapalan, Christine Stumpp, Elena Toth, Elena Volpi, Gemma Carr, Claire Lupton, José Luis Salinas, Borbála Széles, Alberto Viglione, Hafzullah Aksoy, Scott T. Allen, Anam Amin, Vazken Andréassian, Berit Arheimer, Santosh Aryal, Victor R. Baker, Earl Bardsley, Marlies Barendrecht, Alena Bartošová, Okke Batelaan, Wouter Berghuijs, Keith Beven, Theresa Blume, Thom Bogaard, Pablo Borges de Amorim, Michael E. Böttcher, Gilles Boulet, Korbinian Breinl, Mitja Brilly, Luca Brocca, Wouter Buytaert, Attilio Castellarin, Andrea Castelletti, Xiaohong Chen, Yangbo Chen, Yuanfang Chen, Peter Chifflard, Pierluigi Claps, Martyn P. Clark, Adrian L. Collins, Barry Croke, Annette Dathe, Paula Cunha David, Felipe P. J. de Barros, Gerrit de Rooij, Giuliano Di Baldassarre, Jessica M. Driscoll, Doris Duethmann, Ravindra Dwivedi, Ebru Eriş, William Farmer, James Feiccabrino, Grant Ferguson, Ennio Ferrari, Stefano Ferraris, Benjamin Fersch, David C. Finger, Laura Foglia, Keirnan Fowler, Б. И. Гарцман, Simon Gascoin, Éric Gaumé, Alexander Gelfan, Josie Geris, Shervan Gharari, Tom Gleeson, Miriam Glendell, Alena Gonzalez Bevacqua, M. P. González‐Dugo, Salvatore Grimaldi, A.B. Gupta, Björn Guse, Dawei Han, David M. Hannah, A. A. Harpold, Stefan Haun, Kate Heal, Kay Helfricht, Mathew Herrnegger, Matthew R. Hipsey, Hana Hlaváčiková, Clara Hohmann, Ladislav Holko, C. Hopkinson, Markus Hrachowitz, Tissa H. Illangasekare, Azhar Inam, Camyla Innocente, Erkan Istanbulluoglu, Ben Jarihani, Zahra Kalantari, Andis Kalvāns, Sonu Khanal, Sina Khatami, Jens Kiesel, M. J. Kirkby, Wouter Knoben, Krzysztof Kochanek, Silvia Kohnová, Alla Kolechkina, Stefan Krause, David K. Kreamer, Heidi Kreibich, Harald Kunstmann, Holger Lange, Margarida L. R. Liberato, Eric Lindquist, Timothy E. Link, Junguo Liu, Daniel P. Loucks, Charles H. Luce, Gil Mahé, Olga Makarieva, Julien Malard, Shamshagul Mashtayeva, Shreedhar Maskey, Josep Mas‐Pla, Maria Mavrova-Guirguinova, Maurizio Mazzoleni, Sebastian H. Mernild, Bruce Misstear, Alberto Montanari, Hannes Müller-Thomy, Alireza Nabizadeh, Fernando Nardi, Christopher M. U. Neale, Nataliia Nesterova, Bakhram Nurtaev, V.O. Odongo, Subhabrata Panda, Saket Pande, Zhonghe Pang, Georgia Papacharalampous, Charles Perrin, Laurent Pfister, Rafael Pimentel, María José Polo, David Post, Cristina Prieto, Maria‐Helena Ramos, Maik Renner, José Eduardo Reynolds, Elena Ridolfi, Riccardo Rigon, Mònica Riva, David Robertson, Renzo Rosso, Tirthankar Roy, João Henrique Macedo Sá, Gianfausto Salvadori, Melody Sandells, Bettina Schaefli, Andreas Schumann, Anna Scolobig, Jan Seibert, Éric Servat, Mojtaba Shafiei, Ashish Sharma, Moussa Sidibé, Roy C. Sidle, Thomas Skaugen, Hugh G. Smith, Sabine M. Spiessl, Lina Stein, Ingelin Steinsland, Ulrich Strasser, Bob Su, Ján Szolgay, David G. Tarboton, Flavia Tauro, Guillaume Thirel, Fuqiang Tian, Rui Tong, Kamshat Tussupova, Hristos Tyralis, R. Uijlenhoet, Rens van Beek, Ruud van der Ent, Martine van der Ploeg, Anne F. Van Loon, Ilja van Meerveld, Ronald van Nooijen, Pieter van Oel, Jean‐Philippe Vidal, Jana von Freyberg, Sergiy Vorogushyn, Przemysław Wachniew, Andrew J. Wade, Philip J. Ward, Ida Westerberg, Christopher White, Eric F. Wood, Ross Woods, Zongxue Xu, Koray K. Yılmaz, Yongqiang Zhang
Hydrological Sciences Journal, Volume 64, Issue 10

This paper is the outcome of a community initiative to identify major unsolved scientific problems in hydrology motivated by a need for stronger harmonisation of research efforts. The procedure involved a public consultation through online media, followed by two workshops through which a large number of potential science questions were collated, prioritised, and synthesised. In spite of the diversity of the participants (230 scientists in total), the process revealed much about community priorities and the state of our science: a preference for continuity in research questions rather than radical departures or redirections from past and current work. Questions remain focused on the process-based understanding of hydrological variability and causality at all space and time scales. Increased attention to environmental change drives a new emphasis on understanding how change propagates across interfaces within the hydrological system and across disciplinary boundaries. In particular, the expansion of the human footprint raises a new set of questions related to human interactions with nature and water cycle feedbacks in the context of complex water management problems. We hope that this reflection and synthesis of the 23 unsolved problems in hydrology will help guide research efforts for some years to come.
Search
Co-authors
Venues