Shusen Wang


2023

DOI bib
Future change in amplitude and timing of high-flow events in a Canadian subarctic watershed
Olivier Champagne, M. Altaf Arain, Shusen Wang, Martin Leduc
Cold Regions Science and Technology, Volume 209

The Hudson Bay basin is a large contributor of freshwater input in the Arctic Ocean and is also an area affected by destructive spring floods. In this study, the hydrological model MESH (Modelisation Environmentale Communautaire - Surface and hydrology) was set up for the Groundhog River watershed situated in the Hudson Bay basin, to simulate the future evolution of streamflow and annual maximum streamflow. MESH was forced by meteorological data from ERA5 reanalyses in the historical period (1979–2018) and 12 models of the Coupled model intercomparison Project Phase 5 (CMIP5) downscaled with the Canadian Regional Climate model version 5 (CRCM5) in historical (1979–2005) and scenario period (2006–2098). The projections consistently indicate an earlier spring flow and a reduction in the amount of annual maximum streamflow by the end of the 21st century. Under the RCP8.5 scenario, the annual maximum streamflow occurring in the spring is expected to be advanced by 2 weeks and reduced on average from 852 m3/s (±265) in the historical period (1979–2018) to 717m3/s (±250) by the end of the 21st century (2059–2098). Because the seasonal projection of streamflow was not investigated in previous studies, this work is an important first step to assess the seasonal change of streamflow in the Hudson Bay region under climate change.

2021

DOI bib
Interdecadal variability of streamflow in the Hudson Bay Lowlands watersheds driven by atmospheric circulation
Olivier Champagne, M. Altaf Arain, Shusen Wang, Martin Leduc, H A J Russell
Journal of Hydrology: Regional Studies, Volume 36

• Streamflow was satisfactorily simulated by MESH model in Hudson Bay lowlands. • Higher precipitation and streamflow observed in the western watersheds in 1995–2008. • The wet period in 1995–2008 was due to a shift in regional atmospheric circulation. • PDO and EP-NP also influenced this wet period. • Dryer period but sustained streamflow in 2009–2019 due to permafrost thaw. Hudson Bay Lowlands watersheds, Ontario, Canada. The rivers in the Hudson Bay Lowlands are a major source of freshwater entering the Arctic Ocean and they also cause major floods. In recent decades, this region has been affected by major changes in hydroclimatic processes attributed to climate change and natural climate variability. In this study, we used ERA5 reanalysis data, hydrometric observations, and the hydrological model MESH, to investigate the impact of atmospheric circulation on the inter-decadal variability of streamflow between 1979 and 2018 in the Hudson Bay Lowlands. The natural climate variability was assessed using a weather regimes approach based on the discretization of daily geopotential height anomalies (Z500) from ERA5 reanalysis, as well as large scale oceanic and atmospheric variability modes. The results showed an anomalous convergence of atmospheric moisture flux between 1995–2008 that enhanced precipitation and increased streamflow in the western part of the region. This moisture convergence was likely driven by the combination of (i) low pressure anomalies in the East Coast of North America and (ii) low pressure anomalies in western regions of Canada, associated with the cold phase of the pacific decadal oscillation (PDO). Since 2009, streamflow remains high, likely due to more groundwater discharge associated with the degradation of permafrost.

DOI bib
Sensitivity of vegetation dynamics to climate variability in a forest-steppe transition ecozone, north-eastern Inner Mongolia, China
Guangyong You, Bo Liu, Changxin Zou, Haidong Li, Shawn McKenzie, Yaqian He, Jixi Gao, Xiru Jia, M. Altaf Arain, Shusen Wang, Zhi Wang, Xinxin Xia, Wei Xu
Ecological Indicators, Volume 120

Abstract Climate change and land use management were competing explanations for vegetation dynamics in cold and semi-arid region of north-eastern Inner Mongolia, China. In order to reveal the role of human disturbance and clarify the regional climate-vegetation relationship, long-term (1982–2013) datasets of climate variables and vegetation dynamics in a forest-steppe transition zone of north-eastern Inner Mongolia, China were collected. Partial correlation analyses, principal components regression (PCR), and residual analyses were conducted to reveal the vegetation sensitivities to different climate variables and the impact of anthropogenic activities on climate-vegetation relationship. The results showed that. (1) Annual mean air temperature (TMP) significantly increased at a linear slope of 0.08 °C per decade, annual precipitation (PRE) had an insignificantly linear slope of −16.42 mm per decade (p = 0.15). The average Normalized Difference Vegetation Index (NDVI) had a significantly negative trend over the past decades. A change point around the year 1998, coincided with the occurrence of an intense global El Nino event was also identified. (2) Regional climate change can be represented by changes in temperature, humidity and radiation. NDVI in the steppes display high sensitivity to moisture availability. Whereas, forests was influenced by the warmth index (WMI), accumulation of monthly temperature above a threshold of 5 °C. Partial correlation analyses showed that pixels of positive correlation with PRE (controlling TMP) overlap with the pixels of high partial correlation with minimum temperature (controlling maximum temperature), which suggests a hidden link between minimum temperature and PRE in this region. (3) The spatial distribution of significantly decreased NDVI overlap with cropland expansion, as well as the low residual square (R2) from PCR analysis. The NDVI decline in these expanded croplands suggests human disturbance on vegetation dynamics. Following climate warming, NDVI of forested land displayed positive trend. Whereas, most of steppe displayed negative trend, possibly resulting from combined effects of climate drying and human disturbance. We conclude that the regional climate change can be characterized as warming and drying. Steppe areas were sensitive to humidity changes while forested land was mostly influenced by growing season warmth. Overall, the regional NDVI displayed significantly negative trend over the past decades. Beyond climate drying, cropland expansion in the transition area between grassland and forested land is also an important driver for decreased NDVI. Further studies on the ecological and hydrological consequences of crop land expansion is necessary.

2019

DOI bib
Trends of actual and potential evapotranspiration based on Bouchet’s complementary concept in a cold and arid steppe site of Northeastern Asia
Guangyong You, M. Altaf Arain, Shusen Wang, Naifeng Lin, Dan Wu, Shawn McKenzie, Changxin Zou, Bo Liu, Xiaohua Zhang, Jixi Gao
Agricultural and Forest Meteorology, Volume 279

Abstract Due to complex natural water flux processes and the ambiguous explanation of Bouchet’s complementary theory, site-level investigations on evapotranspiration (ET) and related climate variables assist in understanding the regional hydrological response to climate change. In this study, site specific empirical parameters were incorporated in the Bouchet’s complementary relationship (CR) and potential and actual ET were estimated by CR method and subsequently validated by 6 years of ground-based vapor flux observations. Time series analysis, correlation analysis and principal regression analysis were conducted to reveal the characteristics of climate change and the controlling factor(s) of the variations of potential ET and actual ET. The results show that this region is exhibiting a combined warming and drying trend over the past decades with two change points that occurred in 1993 and in 2000. Potential ET was predominantly influenced by temperature and vapor pressure deficit, while actual ET was mostly influenced by vegetation activity. Potential ET was found to be increasing concurrently with declining actual ET to constitute nearly a symmetric complementary relationship over the past decades. This study help to enhance our understanding of the regional hydrological response to climate change. Further studies are needed to partition the actual ET into transpiration and other components and to reveal the role of vegetation activity in determining regional ET as well as water balance.