Sristy Sumana Nath


2022

DOI bib
Exploring Relevant Artifacts of Release Notes: The Practitioners' Perspective
Sristy Sumana Nath, Banani Roy
2022 IEEE International Conference on Software Analysis, Evolution and Reengineering (SANER)

A software release note is one of the essential documents in the software development life cycle. The software release contains a set of information, e.g., bug fixes and security fixes. Release notes are used in different phases, e.g., requirement engineering, software testing and release management. Different types of practitioners (e.g., project managers and clients) get benefited from the release notes to understand the overview of the latest release. As a result, several studies have been done about release notes production and usage in practice. However, two significant problems (e.g., duplication and inconsistency in release notes contents) exist in producing well-written & well-structured release notes and organizing appropriate information regarding different targeted users' needs. For that reason, practitioners face difficulties in writing and reading the release notes using existing tools. To mitigate these problems, we execute two different studies in our paper. First, we execute an exploratory study by analyzing 3,347 release notes of 21 GitHub repositories to understand the documented contents of the release notes. As a result, we find relevant key artifacts, e.g., issues (29%), pull-requests (32%), commits (19%), and common vulnerabilities and exposures (CVE) issues (6%) in the release note contents. Second, we conduct a survey study with 32 professionals to understand the key information that is included in release notes regarding users' roles. For example, project managers are more interested in learning about new features than less critical bug fixes. Our study can guide future research directions to help practitioners produce the release notes with relevant content and improve the documentation quality.

DOI bib
Release conventions of open‐source software: An exploratory study
Debasish Chakroborti, Sristy Sumana Nath, Kevin A. Schneider, Chanchal K. Roy
Journal of Software: Evolution and Process, Volume 35, Issue 1

Abstract Software engineering (SE) methodologies are widely used in both academia and industry to manage the software development life cycle. A number of studies of SE methodologies involve interviewing stakeholders to explore the real‐world practice. Although these interview‐based studies provide us with a user's perspective of an organization's practice, they do not describe the concrete summary of releases in open‐source social coding platforms. In particular, no existing studies investigated how releases are evolved in open‐source coding platforms, which assist release planners to a large extent. This study explores software development patterns followed in open‐source projects to see the overall management's reflection on software release decisions rather than concentrating on a particular methodology. Our experiments on 51 software origins (with 1777k revisions and 12k releases) from the Software Heritage Graph Dataset (SWHGD) and their GitHub project boards (with 23k cards) reveal reasonably active project management with phase simplicity can release software versions more frequently and can follow the small release conventions of Extreme Programming. Additionally, the study also reveals that a combination of development and management activities can be applied to predict the possible number of software releases in a month ( ).

2021

DOI bib
Designing for Recommending Intermediate States in A Scientific Workflow Management System
Debasish Chakroborti, Banani Roy, Sristy Sumana Nath, Debasish Chakroborti, Banani Roy, Sristy Sumana Nath
Proceedings of the ACM on Human-Computer Interaction, Volume 5, Issue EICS

To process a large amount of data sequentially and systematically, proper management of workflow components (i.e., modules, data, configurations, associations among ports and links) in a Scientific Workflow Management System (SWfMS) is inevitable. Managing data with provenance in a SWfMS to support reusability of workflows, modules, and data is not a simple task. Handling such components is even more burdensome for frequently assembled and executed complex workflows for investigating large datasets with different technologies (i.e., various learning algorithms or models). However, a great many studies propose various techniques and technologies for managing and recommending services in a SWfMS, but only a very few studies consider the management of data in a SWfMS for efficient storing and facilitating workflow executions. Furthermore, there is no study to inquire about the effectiveness and efficiency of such data management in a SWfMS from a user perspective. In this paper, we present and evaluate a GUI version of such a novel approach of intermediate data management with two use cases (Plant Phenotyping and Bioinformatics). The technique we call GUI-RISPTS (Recommending Intermediate States from Pipelines Considering Tool-States) can facilitate executions of workflows with processed data (i.e., intermediate outcomes of modules in a workflow) and can thus reduce the computational time of some modules in a SWfMS. We integrated GUI-RISPTS with an existing workflow management system called SciWorCS. In SciWorCS, we present an interface that users use for selecting the recommendation of intermediate states (i.e., modules' outcomes). We investigated GUI-RISPTS's effectiveness from users' perspectives along with measuring its overhead in terms of storage and efficiency in workflow execution.

DOI bib
Designing for Recommending Intermediate States in A Scientific Workflow Management System
Debasish Chakroborti, Banani Roy, Sristy Sumana Nath, Debasish Chakroborti, Banani Roy, Sristy Sumana Nath
Proceedings of the ACM on Human-Computer Interaction, Volume 5, Issue EICS

To process a large amount of data sequentially and systematically, proper management of workflow components (i.e., modules, data, configurations, associations among ports and links) in a Scientific Workflow Management System (SWfMS) is inevitable. Managing data with provenance in a SWfMS to support reusability of workflows, modules, and data is not a simple task. Handling such components is even more burdensome for frequently assembled and executed complex workflows for investigating large datasets with different technologies (i.e., various learning algorithms or models). However, a great many studies propose various techniques and technologies for managing and recommending services in a SWfMS, but only a very few studies consider the management of data in a SWfMS for efficient storing and facilitating workflow executions. Furthermore, there is no study to inquire about the effectiveness and efficiency of such data management in a SWfMS from a user perspective. In this paper, we present and evaluate a GUI version of such a novel approach of intermediate data management with two use cases (Plant Phenotyping and Bioinformatics). The technique we call GUI-RISPTS (Recommending Intermediate States from Pipelines Considering Tool-States) can facilitate executions of workflows with processed data (i.e., intermediate outcomes of modules in a workflow) and can thus reduce the computational time of some modules in a SWfMS. We integrated GUI-RISPTS with an existing workflow management system called SciWorCS. In SciWorCS, we present an interface that users use for selecting the recommendation of intermediate states (i.e., modules' outcomes). We investigated GUI-RISPTS's effectiveness from users' perspectives along with measuring its overhead in terms of storage and efficiency in workflow execution.

DOI bib
Semantic Slicing of Architectural Change Commits
Amit Kumar Mondal, Chanchal K. Roy, Kevin A. Schneider, Banani Roy, Sristy Sumana Nath, Amit Kumar Mondal, Chanchal K. Roy, Kevin A. Schneider, Banani Roy, Sristy Sumana Nath
Proceedings of the 15th ACM / IEEE International Symposium on Empirical Software Engineering and Measurement (ESEM)

Software architectural changes involve more than one module or component and are complex to analyze compared to local code changes. Development teams aiming to review architectural aspects (design) of a change commit consider many essential scenarios such as access rules and restrictions on usage of program entities across modules. Moreover, design review is essential when proper architectural formulations are paramount for developing and deploying a system. Untangling architectural changes, recovering semantic design, and producing design notes are the crucial tasks of the design review process. To support these tasks, we construct a lightweight tool [4] that can detect and decompose semantic slices of a commit containing architectural instances. A semantic slice consists of a description of relational information of involved modules, their classes, methods and connected modules in a change instance, which is easy to understand to a reviewer. We extract various directory and naming structures (DANS) properties from the source code for developing our tool. Utilizing the DANS properties, our tool first detects architectural change instances based on our defined metric and then decomposes the slices (based on string processing). Our preliminary investigation with ten open-source projects (developed in Java and Kotlin) reveals that the DANS properties produce highly reliable precision and recall (93-100%) for detecting and generating architectural slices. Our proposed tool will serve as the preliminary approach for the semantic design recovery and design summary generation for the project releases.

DOI bib
Semantic Slicing of Architectural Change Commits
Amit Kumar Mondal, Chanchal K. Roy, Kevin A. Schneider, Banani Roy, Sristy Sumana Nath, Amit Kumar Mondal, Chanchal K. Roy, Kevin A. Schneider, Banani Roy, Sristy Sumana Nath
Proceedings of the 15th ACM / IEEE International Symposium on Empirical Software Engineering and Measurement (ESEM)

Software architectural changes involve more than one module or component and are complex to analyze compared to local code changes. Development teams aiming to review architectural aspects (design) of a change commit consider many essential scenarios such as access rules and restrictions on usage of program entities across modules. Moreover, design review is essential when proper architectural formulations are paramount for developing and deploying a system. Untangling architectural changes, recovering semantic design, and producing design notes are the crucial tasks of the design review process. To support these tasks, we construct a lightweight tool [4] that can detect and decompose semantic slices of a commit containing architectural instances. A semantic slice consists of a description of relational information of involved modules, their classes, methods and connected modules in a change instance, which is easy to understand to a reviewer. We extract various directory and naming structures (DANS) properties from the source code for developing our tool. Utilizing the DANS properties, our tool first detects architectural change instances based on our defined metric and then decomposes the slices (based on string processing). Our preliminary investigation with ten open-source projects (developed in Java and Kotlin) reveals that the DANS properties produce highly reliable precision and recall (93-100%) for detecting and generating architectural slices. Our proposed tool will serve as the preliminary approach for the semantic design recovery and design summary generation for the project releases.

DOI bib
Automatically Generating Release Notes with Content Classification Models
Sristy Sumana Nath, Banani Roy, Sristy Sumana Nath, Banani Roy
International Journal of Software Engineering and Knowledge Engineering, Volume 31, Issue 11n12

Release notes are admitted as an essential technical document in software maintenance. They summarize the main changes, e.g. bug fixes and new features, that have happened in the software since the previous release. Manually producing release notes is a time-consuming and challenging task. For that reason, sometimes developers neglect to write release notes. For example, we collect data from GitHub with over 1900 releases, and among them, 37% of the release notes are empty. To mitigate this problem, we propose an automatic release notes generation approach by applying the text summarization techniques, i.e. TextRank. To improve the keyword extraction method of traditional TextRank, we integrate the GloVe word embedding technique with TextRank. After generating release notes automatically, we apply machine learning algorithms to classify the release note contents (or sentences). We classify the contents into six categories, e.g. bug fixes and performance improvements, to represent the release notes better for users. We use the evaluation metric, e.g. ROUGE, to evaluate the automatically generated release notes. We also compare the performance of our technique with two popular extractive algorithms, e.g. Luhn’s and latent semantic analysis (LSA). Our evaluation results show that the improved TextRank method outperforms the two algorithms.

DOI bib
Automatically Generating Release Notes with Content Classification Models
Sristy Sumana Nath, Banani Roy, Sristy Sumana Nath, Banani Roy
International Journal of Software Engineering and Knowledge Engineering, Volume 31, Issue 11n12

Release notes are admitted as an essential technical document in software maintenance. They summarize the main changes, e.g. bug fixes and new features, that have happened in the software since the previous release. Manually producing release notes is a time-consuming and challenging task. For that reason, sometimes developers neglect to write release notes. For example, we collect data from GitHub with over 1900 releases, and among them, 37% of the release notes are empty. To mitigate this problem, we propose an automatic release notes generation approach by applying the text summarization techniques, i.e. TextRank. To improve the keyword extraction method of traditional TextRank, we integrate the GloVe word embedding technique with TextRank. After generating release notes automatically, we apply machine learning algorithms to classify the release note contents (or sentences). We classify the contents into six categories, e.g. bug fixes and performance improvements, to represent the release notes better for users. We use the evaluation metric, e.g. ROUGE, to evaluate the automatically generated release notes. We also compare the performance of our technique with two popular extractive algorithms, e.g. Luhn’s and latent semantic analysis (LSA). Our evaluation results show that the improved TextRank method outperforms the two algorithms.

2020

DOI bib
An Exploratory Study to Find Motives Behind Cross-platform Forks from Software Heritage Dataset
Avijit Bhattacharjee, Sristy Sumana Nath, Shurui Zhou, Debasish Chakroborti, Banani Roy, Chanchal K. Roy, Kevin A. Schneider
Proceedings of the 17th International Conference on Mining Software Repositories

The fork-based development mechanism provides the flexibility and the unified processes for software teams to collaborate easily in a distributed setting without too much coordination overhead.Currently, multiple social coding platforms support fork-based development, such as GitHub, GitLab, and Bitbucket. Although these different platforms virtually share the same features, they have different emphasis. As GitHub is the most popular platform and the corresponding data is publicly available, most of the current studies are focusing on GitHub hosted projects. However, we observed anecdote evidences that people are confused about choosing among these platforms, and some projects are migrating from one platform to another, and the reasons behind these activities remain unknown.With the advances of Software Heritage Graph Dataset (SWHGD),we have the opportunity to investigate the forking activities across platforms. In this paper, we conduct an exploratory study on 10popular open-source projects to identify cross-platform forks and investigate the motivation behind. Preliminary result shows that cross-platform forks do exist. For the 10 subject systems in this study, we found 81,357 forks in total among which 179 forks are on GitLab. Based on our qualitative analysis, we found that most of the cross-platform forks that we identified are mirrors of the repositories on another platform, but we still find cases that were created due to preference of using certain functionalities (e.g. Continuous Integration (CI)) supported by different platforms. This study lays the foundation of future research directions, such as understanding the differences between platforms and supporting cross-platform collaboration.