Tanner J. Owca


2021

DOI bib
Application of artificial substrate samplers to assess enrichment of metals of concern by river floodwaters to lakes across the Peace-Athabasca Delta
Cory A. M. Savage, Tanner J. Owca, Mitchell L. Kay, Jelle A. Faber, Brent B. Wolfe, Roland I. Hall, Cory A. M. Savage, Tanner J. Owca, Mitchell L. Kay, Jelle A. Faber, Brent B. Wolfe, Roland I. Hall
Journal of Hydrology: Regional Studies, Volume 38

Peace-Athabasca Delta (PAD), northeastern Alberta. Potential for downstream delivery of contaminants via Athabasca River floodwaters to lakes of the PAD has raised local to international concern. Here, we quantify enrichment of eight metals (Be, Cd, Cr, Cu, Ni, Pb, V, Zn) in aquatic biota, relative to sediment-based pre-industrial baselines, via analysis of biofilm-sediment mixtures accrued on artificial substrate samplers deployed during summers of 2017 and 2018 in > 40 lakes. Widespread flooding in the southern portion of the delta in spring 2018 allows for assessment of metal enrichment by Athabasca River floodwaters. River floodwaters are not implicated as a pathway of metal enrichment to biofilm-sediment mixtures in PAD lakes from upstream sources. MANOVA tests revealed no significant difference in residual concentrations of all eight metals in lakes that did not flood versus lakes that flooded during one or both study years. Also, no enrichment was detected for concentrations of biologically inert metals (Be, Cr, Pb) and those related to oil-sands development (Ni, V). Enrichment of Cd, Cu, and Zn at non-flooded lakes, however, suggests uptake of biologically active metals complicates comparisons of organic-rich biofilm-sediment mixtures to sediment-derived baselines for these metals. Results demonstrate that this novel approach could be adopted for lake monitoring within the federal Action Plan. • Oil sands monitoring of lakes in the Peace-Athabasca Delta needs pre-disturbance data. • Study compares [metals] in biofilm-sediment to [metals] in pre-1920 lake sediment. • Athabasca River floodwaters not implicated as pathway for metal enrichment. • Monitoring framework contributes to Wood Buffalo National Park Action Plan.

DOI bib
Application of artificial substrate samplers to assess enrichment of metals of concern by river floodwaters to lakes across the Peace-Athabasca Delta
Cory A. M. Savage, Tanner J. Owca, Mitchell L. Kay, Jelle A. Faber, Brent B. Wolfe, Roland I. Hall, Cory A. M. Savage, Tanner J. Owca, Mitchell L. Kay, Jelle A. Faber, Brent B. Wolfe, Roland I. Hall
Journal of Hydrology: Regional Studies, Volume 38

Peace-Athabasca Delta (PAD), northeastern Alberta. Potential for downstream delivery of contaminants via Athabasca River floodwaters to lakes of the PAD has raised local to international concern. Here, we quantify enrichment of eight metals (Be, Cd, Cr, Cu, Ni, Pb, V, Zn) in aquatic biota, relative to sediment-based pre-industrial baselines, via analysis of biofilm-sediment mixtures accrued on artificial substrate samplers deployed during summers of 2017 and 2018 in > 40 lakes. Widespread flooding in the southern portion of the delta in spring 2018 allows for assessment of metal enrichment by Athabasca River floodwaters. River floodwaters are not implicated as a pathway of metal enrichment to biofilm-sediment mixtures in PAD lakes from upstream sources. MANOVA tests revealed no significant difference in residual concentrations of all eight metals in lakes that did not flood versus lakes that flooded during one or both study years. Also, no enrichment was detected for concentrations of biologically inert metals (Be, Cr, Pb) and those related to oil-sands development (Ni, V). Enrichment of Cd, Cu, and Zn at non-flooded lakes, however, suggests uptake of biologically active metals complicates comparisons of organic-rich biofilm-sediment mixtures to sediment-derived baselines for these metals. Results demonstrate that this novel approach could be adopted for lake monitoring within the federal Action Plan. • Oil sands monitoring of lakes in the Peace-Athabasca Delta needs pre-disturbance data. • Study compares [metals] in biofilm-sediment to [metals] in pre-1920 lake sediment. • Athabasca River floodwaters not implicated as pathway for metal enrichment. • Monitoring framework contributes to Wood Buffalo National Park Action Plan.

2020

DOI bib
Evaluating temporal patterns of metals concentrations in floodplain lakes of the Athabasca Delta (Canada) relative to pre-industrial baselines
Mitchell L. Kay, Johan A. Wiklund, Casey R. Remmer, Tanner J. Owca, Wynona H. Klemt, Laura K. Neary, Kathleen C. Brown, Erin MacDonald, K.P.B. Thomson, Jasmina M. Vucic, Katherine Wesenberg, Roland I. Hall, Brent B. Wolfe
Science of The Total Environment, Volume 704

• Lack of pre-industrial baseline data hampers assessment of oil sands river pollution. • We analyzed metals concentrations in cores of Athabasca Delta floodplain lakes. • No enrichment was detected for metals associated with oil sands development. • Results inform decision on World Heritage status of Wood Buffalo National Park. • A framework has been established for ongoing aquatic ecosystem monitoring. Sediment quality monitoring is widely used to quantify extent of river pollution, but requires knowledge of pre-disturbance conditions in the potentially altered landscape. This has long been identified as a critical aspect to develop for addressing concerns of river pollution in the Alberta Oil Sands Region. Here, we use analyses of sediment cores from eight floodplain lakes spanning a 67 river-km transect across the Athabasca Delta to define pre-1920 (pre-industrial) baseline concentrations for vanadium and five primary pollutants. We then evaluate if sediment metals concentrations have become enriched above baseline since onset of oil sands development and other industrial activities. Results demonstrate no enrichment of metals concentrations (except zinc at one lake) and absence of consistent temporal increases above pre-industrial baselines. Thus, natural processes continue to dominate metal deposition in floodplain lakes of the Athabasca Delta -- an important finding to inform stewardship decisions. The pre-1920 metals concentrations baselines offer a useful tool for ongoing sediment monitoring in aquatic ecosystems of the Athabasca Delta.

DOI bib
Use of pre-industrial baselines to monitor anthropogenic enrichment of metals concentrations in recently deposited sediment of floodplain lakes in the Peace-Athabasca Delta (Alberta, Canada)
Tanner J. Owca, Mitchell L. Kay, Jelle A. Faber, Casey R. Remmer, Nelson A. Zabel, Johan A. Wiklund, Brent B. Wolfe, Roland I. Hall
Environmental Monitoring and Assessment, Volume 192, Issue 2

Abstract Well-designed monitoring approaches are needed to assess effects of industrial development on downstream aquatic environments and guide environmental stewardship. Here, we develop and apply a monitoring approach to detect potential enrichment of metals concentrations in surficial lake sediments of the Peace-Athabasca Delta (PAD), northern Alberta, Canada. Since the ecological integrity of the PAD is strongly tied to river floodwaters that replenish lakes in the delta, and the PAD is located downstream of the Alberta oil sands, concerns have been raised over the potential transport of industry-supplied metals to the PAD via the Athabasca River. Surface sediment samples were collected in September 2017 from 61 lakes across the delta, and again in July 2018 from 20 of the same lakes that had received river floodwaters 2 months earlier, to provide snapshots of metals concentrations (Be, Cd, Cr, Cu, Ni, Pb, V, and Zn) that have recently accumulated in these lakes. To assess for anthropogenic enrichment, surficial sediment metals concentrations were normalized to aluminum and compared to pre-industrial baseline (i.e., reference) metal-aluminum linear relations for the Athabasca and Peace sectors of the PAD developed from pre-1920 measurements in lake sediment cores. Numerical analysis demonstrates no marked enrichment of these metals concentrations above pre-1920 baselines despite strong ability (> 99% power) to detect enrichment of 10%. Measurements of river sediment collected by the Regional Aquatics- and Oil Sands-Monitoring Programs (RAMP/OSM) also did not exceed pre-1920 concentrations. Thus, results presented here show no evidence of substantial oil sands-derived metals enrichment of sediment supplied by the Athabasca River to lakes in the PAD and demonstrate the usefulness of these methods as a monitoring framework.

DOI bib
Building upon open-barrel corer and sectioning systems to foster the continuing legacy of John Glew
James V. Telford, Mitchell L. Kay, Harman Vander Heide, Johan A. Wiklund, Tanner J. Owca, Jelle A. Faber, Brent B. Wolfe, Roland I. Hall
Journal of Paleolimnology, Volume 65, Issue 2

The late John Glew contributed valuable equipment to the paleolimnology community for successful collection and processing of cores of sediment from aquatic ecosystems. Unfortunately, tubes that fit his hammer-gravity corer design are no longer conveniently available for purchase and, with his sudden passing, Glew gravity and coring equipment is difficult or impossible to access. In some field-sampling situations, other commercially available equipment present limitations. Here, we provide an updated design of the Glew gravity corer which accommodates a hammer-percussion instrument and overcomes limitations we have encountered when coring lakes in remote locations from floats of a helicopter or small, inflatable watercraft. Our approach integrates the ‘best of both worlds’ provided by the Glew and commercially available Uwitec designs, using readily available components. We updated the Glew corer tube collar to be compatible with standard, commercially available 90-mm external diameter (86-mm internal diameter) PVC tubing that fits Uwitec components (e.g., Uwitec rubber ‘piston’ and ‘stoppers’; using terminology of the Uwitec catalogue), and designed a spring-loaded gasket-style plunger that achieves greater suction than the standard Glew designs. We also updated the Glew vertical sectioner to be compatible with 90-mm-diameter core tubes typically ranging from 60–120 cm long. An outcome is consolidation of the Uwitec and Glew gravity coring systems, which has allowed for interchangeability and choice among use of original and hammer-driven Glew, Uwitec, and the new hybrid ‘Uwi-Glew-ee’ gravity corer and sectioner configurations, depending on logistical constraints of fieldwork and anticipated lake sediment composition. The parts and systems are available from University of Waterloo’s Science Technical Services (https://uwaterloo.ca/science-technical-services/).

2019

DOI bib
Delineating extent and magnitude of river flooding to lakes across a northern delta using water isotope tracers
Casey R. Remmer, Tanner J. Owca, Laura K. Neary, Johan A. Wiklund, Mitchell L. Kay, Brent B. Wolfe, Roland I. Hall
Hydrological Processes, Volume 34, Issue 2

Hydrological monitoring in complex, dynamic northern floodplain landscapes is challenging, but increasingly important as a consequence of multiple stressors. The Peace‐Athabasca Delta in northern Alberta, Canada, is a Ramsar Wetland of International Importance reliant on episodic river ice‐jam flood events to recharge abundant perched lakes and wetlands. Improved and systematic monitoring of landscape‐scale hydrological connectivity among freshwater ecosystems (rivers, channels, wetlands, and lakes) is needed to guide stewardship decisions in the face of climate change and upstream industrial development. Here, we use water isotope compositions, supplemented by measurements of specific conductivity and field observations, from 68 lakes and 9 river sites in May 2018 to delineate the extent and magnitude of spring ice‐jam induced flooding along the Peace and Athabasca rivers. Lake‐specific estimates of input water isotope composition (δI) were modelled after accounting for influence of evaporative isotopic enrichment. Then, using the distinct isotopic signature of input water sources, we develop a set of binary mixing models and estimate the proportion of input to flooded lakes attributable to river floodwater and precipitation (snow or rain). This approach allowed identification of areas and magnitude of flooding that were not captured by other methods, including direct observations from flyovers, and to demarcate flow pathways in the delta. We demonstrate water isotope tracers as an efficient and effective monitoring tool for delineating spatial extent and magnitude of an important hydrological process and elucidating connectivity in the Peace‐Athabasca Delta, an approach that can be readily adopted at other floodplain landscapes.