Taylor Maavara


2021

DOI bib
Effects of pH and Dissolved Silicate on Phosphate Mineral-Water Partitioning with Goethite
Md Abdus Sabur, Chris T. Parsons, Taylor Maavara, Philippe Van Cappellen
ACS Earth and Space Chemistry, Volume 6, Issue 1

Release of sorbed phosphate from ferric iron oxyhydroxides can contribute to excessive algal growth in surface water bodies. Dissolved silicate has been hypothesized to facilitate phosphate desorption by competing for mineral surface sites. Here, we conducted phosphate and silicate adsorption experiments with goethite under a wide pH range (3–11), both individually (P or Si) and simultaneously (P plus Si). The entire experimental data set was successfully reproduced by the charge distribution multisite surface complexation (CD-MUSIC) model. Phosphate adsorption was highest under acidic conditions and gradually decreased from near-neutral to alkaline pH conditions. Maximum silicate adsorption, in contrast, occurred under alkaline conditions, peaking around pH 10. The competitive effect of silicate on phosphate adsorption was negligible under acidic conditions, becoming more pronounced under alkaline conditions and elevated molar Si:P ratios (>4). In a subsequent experiment, desorption of phosphate with increasing pH was monitored, in the presence or absence of dissolved silicate. While, as expected, desorption of phosphate was observed during the transition from acidic to alkaline conditions, a fraction of phosphate remained irreversibly bound to goethite. Even at high Si:P ratios and alkaline pH, dissolved silicate did not affect phosphate desorption, implying that kinetic factors prevented silicate from displacing phosphate from goethite binding sites.

2020

DOI bib
Global Dam‐Driven Changes to Riverine N:P:Si Ratios Delivered to the Coastal Ocean
Taylor Maavara, Zahra Akbarzadeh, Philippe Van Cappellen
Geophysical Research Letters, Volume 47, Issue 15

River damming alters nutrient fluxes along the land‐ocean aquatic continuum as a result of biogeochemical processes in reservoirs. Both the changes in riverine nutrient fluxes and nutrient ratios impact ecosystem functioning of receiving water bodies. We utilize spatially distributed mechanistic models of nitrogen (N), phosphorus (P), and silicon (Si) cycling in reservoirs to quantify changes in nutrient stoichiometry of river discharge to coastal waters. The results demonstrate that the growing number of dams decouples the riverine fluxes of N, P, and Si. Worldwide, preferential removal of P over N in reservoirs increases N:P ratios delivered to the ocean, raising the potential for P limitation of coastal productivity. By midcentury, more than half of the rivers discharging to the coastal zone will experience a higher removal of reactive Si relative to reactive P and total N, in response to the rapid pace at which new hydroelectric dams are being built.

2019

DOI bib
Effects of Damming on River Nitrogen Fluxes: A Global Analysis
Zahra Akbarzadeh, Taylor Maavara, Stephanie Slowinski, Philippe Van Cappellen
Global Biogeochemical Cycles, Volume 33, Issue 11

This code, developed in MATLAB R2018a, is a process based mass balance modelfor simulating the biogeochemical cycling of nitrogen in dam reservoirs.

2018

DOI bib
The role of groundwater discharge fluxes on Si:P ratios in a major tributary to Lake Erie
Taylor Maavara, Stephanie Slowinski, Fereidoun Rezanezhad, K. J. Van Meter, Philippe Van Cappellen
Science of The Total Environment, Volume 622-623

Groundwater discharge can be a major source of nutrients to river systems. Although quantification of groundwater nitrate loading to streams is common, the dependence of surface water silicon (Si) and phosphorus (P) concentrations on groundwater sources has rarely been determined. Additionally, the ability of groundwater discharge to drive surface water Si:P ratios has not been contextualized relative to riverine inputs or in-stream transformations. In this study, we quantify the seasonal dynamics of Si and P cycles in the Grand River (GR) watershed, the largest Canadian watershed draining into Lake Erie, to test our hypothesis that regions of Si-rich groundwater discharge increase surface water Si:P ratios. Historically, both the GR and Lake Erie have been considered stoichiometrically P-limited, where the molar Si:P ratio is greater than the ~16:1 phytoplankton uptake ratio. However, recent trends suggest that eastern Lake Erie may be approaching Si-limitation. We sampled groundwater and surface water for dissolved and reactive particulate Si as well as total dissolved P for 12months within and downstream of a 50-km reach of high groundwater discharge. Our results indicate that groundwater Si:P ratios are lower than the corresponding surface water and that groundwater is a significant source of bioavailable P to surface water. Despite these observations, the watershed remains P-limited for the majority of the year, with localized periods of Si-limitation. We further find that groundwater Si:P ratios are a relatively minor driver of surface water Si:P, but that the magnitude of Si and P loads from groundwater represent a large proportion of the overall fluxes to Lake Erie.