2022
DOI
bib
abs
The cold regions hydrological modelling platform for hydrological diagnosis and prediction based on process understanding
John W. Pomeroy,
Thomas A. Brown,
Xing Fang,
Kevin Shook,
Dhiraj Pradhananga,
Robert Armstrong,
Phillip Harder,
Christopher B. Marsh,
Diogo Costa,
Sebastian A. Krogh,
Caroline Aubry‐Wake,
Holly Annand,
P. Lawford,
Zhihua He,
Mazda Kompanizare,
Jimmy Moreno
Journal of Hydrology, Volume 615
• Snow, glaciers, wetlands, frozen ground and permafrost needed in hydrological models. • Water quality export by coupling biochemical transformations to cold regions processes. • Hydrological sensitivity to land use depends on cold regions processes. • Strong cold regions hydrological sensitivity to climate warming. Cold regions involve hydrological processes that are not often addressed appropriately in hydrological models. The Cold Regions Hydrological Modelling platform (CRHM) was initially developed in 1998 to assemble and explore the hydrological understanding developed from a series of research basins spanning Canada and international cold regions. Hydrological processes and basin response in cold regions are simulated in a flexible, modular, object-oriented, multiphysics platform. The CRHM platform allows for multiple representations of forcing data interpolation and extrapolation, hydrological model spatial and physical process structures, and parameter values. It is well suited for model falsification, algorithm intercomparison and benchmarking, and has been deployed for basin hydrology diagnosis, prediction, land use change and water quality analysis, climate impact analysis and flood forecasting around the world. This paper describes CRHM’s capabilities, and the insights derived by applying the model in concert with process hydrology research and using the combined information and understanding from research basins to predict hydrological variables, diagnose hydrological change and determine the appropriateness of model structure and parameterisations.
2021
DOI
bib
abs
Advances in the simulation of nutrient dynamics in cold climate agricultural basins: Developing new nitrogen and phosphorus modules for the Cold Regions Hydrological Modelling Platform
Diogo Costa,
John W. Pomeroy,
Thomas A. Brown,
Helen M. Baulch,
J. G. Elliott,
Merrin L. Macrae,
Diogo Costa,
John W. Pomeroy,
Thomas A. Brown,
Helen M. Baulch,
J. G. Elliott,
Merrin L. Macrae
Journal of Hydrology, Volume 603
• Application of popular catchment nutrient models is problematic in cold regions. • New nutrient modules have been developed for the Cold Regions Hydrological Model. • The model was applied to a sub-basin of the increasingly eutrophic Lake Winnipeg, Canada. • Simulated SWE, discharge, NO3, NH4, SRP and partP were compared against observations. • Typical ∼9 day-freshet accounted for 16–31% of the total annual nutrient load. Excess nutrients in aquatic ecosystems is a major water quality problem globally. Worsening eutrophication issues are notable in cold temperate areas, with pervasive problems in many agriculturally dominated catchments. Predicting nutrient export to rivers and lakes is particularly difficult in cold agricultural environments because of challenges in modelling snow, soil, frozen ground, climate, and anthropogenic controls. Previous research has shown that the use of many popular small basin nutrient models can be problematic in cold regions due to poor representation of cold region hydrology. In this study, the Cold Regions Hydrological Modelling Platform (CRHM), a modular modelling system, which has been widely deployed across Canada and cold regions worldwide, was used to address this problem. CRHM was extended to simulate biogeochemical and transport processes for nitrogen and phosphorus through a complex of new process-based modules that represent physicochemical processes in snow, soil and freshwater. Agricultural practices such as tillage and fertilizer application, which strongly impact the availability and release of soil nutrients, can be explicitly represented in the model. A test case in an agricultural basin draining towards Lake Winnipeg shows that the model can capture the extreme hydrology and nutrient load variability of small agricultural basins at hourly time steps. It was demonstrated that fine temporal resolutions are an essential modelling requisite to capture strong concentration changes in agricultural tributaries in cold agricultural environments. Within these ephemeral and intermittent streams, on average, 30%, 31%, 20%, and 16% of the total annual load of nitrate (NO 3 ), ammonium (NH 4 ), soluble reactive phosphorus (SRP), and particulate phosphorous (partP)NO 3 , NH 4 , SRP and partP occurred during the episodic snowmelt freshet ( ∼ 9 days, accounting for 21% of the annual flow), but shows extreme temporal variation. The new nutrient modules are critical tools for predicting nutrient export from small agricultural drainage basins in cold climates via better representation of key hydrological processes, and a temporal resolution more suited to capture dynamics of ephemeral and intermittent streams.
DOI
bib
abs
Advances in the simulation of nutrient dynamics in cold climate agricultural basins: Developing new nitrogen and phosphorus modules for the Cold Regions Hydrological Modelling Platform
Diogo Costa,
John W. Pomeroy,
Thomas A. Brown,
Helen M. Baulch,
J. G. Elliott,
Merrin L. Macrae,
Diogo Costa,
John W. Pomeroy,
Thomas A. Brown,
Helen M. Baulch,
J. G. Elliott,
Merrin L. Macrae
Journal of Hydrology, Volume 603
• Application of popular catchment nutrient models is problematic in cold regions. • New nutrient modules have been developed for the Cold Regions Hydrological Model. • The model was applied to a sub-basin of the increasingly eutrophic Lake Winnipeg, Canada. • Simulated SWE, discharge, NO3, NH4, SRP and partP were compared against observations. • Typical ∼9 day-freshet accounted for 16–31% of the total annual nutrient load. Excess nutrients in aquatic ecosystems is a major water quality problem globally. Worsening eutrophication issues are notable in cold temperate areas, with pervasive problems in many agriculturally dominated catchments. Predicting nutrient export to rivers and lakes is particularly difficult in cold agricultural environments because of challenges in modelling snow, soil, frozen ground, climate, and anthropogenic controls. Previous research has shown that the use of many popular small basin nutrient models can be problematic in cold regions due to poor representation of cold region hydrology. In this study, the Cold Regions Hydrological Modelling Platform (CRHM), a modular modelling system, which has been widely deployed across Canada and cold regions worldwide, was used to address this problem. CRHM was extended to simulate biogeochemical and transport processes for nitrogen and phosphorus through a complex of new process-based modules that represent physicochemical processes in snow, soil and freshwater. Agricultural practices such as tillage and fertilizer application, which strongly impact the availability and release of soil nutrients, can be explicitly represented in the model. A test case in an agricultural basin draining towards Lake Winnipeg shows that the model can capture the extreme hydrology and nutrient load variability of small agricultural basins at hourly time steps. It was demonstrated that fine temporal resolutions are an essential modelling requisite to capture strong concentration changes in agricultural tributaries in cold agricultural environments. Within these ephemeral and intermittent streams, on average, 30%, 31%, 20%, and 16% of the total annual load of nitrate (NO 3 ), ammonium (NH 4 ), soluble reactive phosphorus (SRP), and particulate phosphorous (partP)NO 3 , NH 4 , SRP and partP occurred during the episodic snowmelt freshet ( ∼ 9 days, accounting for 21% of the annual flow), but shows extreme temporal variation. The new nutrient modules are critical tools for predicting nutrient export from small agricultural drainage basins in cold climates via better representation of key hydrological processes, and a temporal resolution more suited to capture dynamics of ephemeral and intermittent streams.