Thorsten Wagener


2022

DOI bib
The challenge of unprecedented floods and droughts in risk management
Heidi Kreibich, Anne F. Van Loon, Kai Schröter, Philip J. Ward, Maurizio Mazzoleni, Nivedita Sairam, Guta Wakbulcho Abeshu, С. А. Агафонова, Amir AghaKouchak, Hafzullah Aksoy, Camila Álvarez-Garretón, Blanca Aznar, Laila Balkhi, Marlies Barendrecht, Sylvain Biancamaria, Liduin Bos-Burgering, Chris Bradley, Yus Budiyono, Wouter Buytaert, Lucinda Capewell, Hayley Carlson, Yonca Cavus, Anaïs Couasnon, Gemma Coxon, Ioannis Ν. Daliakopoulos, Marleen de Ruiter, Claire Delus, Mathilde Erfurt, Giuseppe Esposito, Didier François, Frédéric Frappart, Jim Freer, Н. Л. Фролова, Animesh K. Gain, Manolis Grillakis, Jordi Oriol Grima, Diego Alejandro Guzmán Arias, Laurie S. Huning, Monica Ionita, Maxim Kharlamov, Đào Nguyên Khôi, Natalie Kieboom, Maria Kireeva, Aristeidis Koutroulis, Waldo Lavado‐Casimiro, Hong‐Yi Li, M. C. Llasat, David Macdonald, Johanna Mård, Hannah Mathew-Richards, Andrew McKenzie, Alfonso Mejía, Eduardo Mário Mendiondo, Marjolein Mens, Shifteh Mobini, Guilherme Samprogna Mohor, Viorica Nagavciuc, Thanh Ngo‐Duc, Thi Thao Nguyen Huynh, Pham Thi Thao Nhi, Olga Petrucci, Hồng Quân Nguyễn, Pere Quintana‐Seguí, Saman Razavi, Elena Ridolfi, Jannik Riegel, Md. Shibly Sadik, Elisa Savelli, Alexey Sazonov, Sanjib Sharma, Johanna Sörensen, Felipe Augusto Arguello Souza, Kerstin Stahl, Max Steinhausen, Michael Stoelzle, Wiwiana Szalińska, Qiuhong Tang, Fuqiang Tian, Tamara Tokarczyk, Carolina Tovar, Thi Van Thu Tran, M.H.J. van Huijgevoort, Michelle T. H. van Vliet, Sergiy Vorogushyn, Thorsten Wagener, Yueling Wang, Doris E. Wendt, Elliot Wickham, Long Yang, Mauricio Zambrano‐Bigiarini, Günter Blöschl, Giuliano Di Baldassarre
Nature, Volume 608, Issue 7921

Abstract Risk management has reduced vulnerability to floods and droughts globally 1,2 , yet their impacts are still increasing 3 . An improved understanding of the causes of changing impacts is therefore needed, but has been hampered by a lack of empirical data 4,5 . On the basis of a global dataset of 45 pairs of events that occurred within the same area, we show that risk management generally reduces the impacts of floods and droughts but faces difficulties in reducing the impacts of unprecedented events of a magnitude not previously experienced. If the second event was much more hazardous than the first, its impact was almost always higher. This is because management was not designed to deal with such extreme events: for example, they exceeded the design levels of levees and reservoirs. In two success stories, the impact of the second, more hazardous, event was lower, as a result of improved risk management governance and high investment in integrated management. The observed difficulty of managing unprecedented events is alarming, given that more extreme hydrological events are projected owing to climate change 3 .

2021

DOI bib
Towards more realistic runoff projections by removing limits on simulated soil moisture deficit
Keirnan Fowler, Gemma Coxon, Jim Freer, Wouter Knoben, Murray C. Peel, Thorsten Wagener, Andrew W. Western, Ross Woods, Lu Zhang, Keirnan Fowler, Gemma Coxon, Jim Freer, Wouter Knoben, Murray C. Peel, Thorsten Wagener, Andrew W. Western, Ross Woods, Lu Zhang
Journal of Hydrology, Volume 600

• Most conceptual bucket models have an upper limit on simulated soil moisture deficit. • Problems arise when the bucket “empties” because ET drops to unrealistic (low) levels. • Alternatives include bottomless buckets or deficit-based soil moisture accounting. • Here, we switch to a deficit-based scheme while keeping everything else constant. • Tested over historic drought, model performance and realism are enhanced. Rainfall-runoff models based on conceptual “buckets” are frequently used in climate change impact studies to provide runoff projections. When these buckets approach empty, the simulated evapotranspiration approaches zero, which places an implicit limit on the soil moisture deficit that can accrue within the model. Such models may cease to properly track the moisture deficit accumulating in reality as dry conditions continue, leading to overestimation of subsequent runoff and possible long-term bias under drying climate. Here, we suggest that model realism may be improved through alternatives which remove the upper limit on simulated soil moisture deficit, such as “bottomless” buckets or deficit-based soil moisture accounting. While some existing models incorporate such measures, no study until now has systematically assessed their impact on model realism under drying climate. Here, we alter a common bucket model by changing the soil moisture storage to a deficit accounting system in such a way as to remove the upper limit on simulated soil moisture deficit. Tested on 38 Australian catchments, the altered model is better able to track the decline in soil moisture at the end of seasonal dry periods, which leads to superior performance over varied historic climate, including the 13-year “Millennium” drought. However, groundwater and GRACE data reveal long-term trends that are not matched in simulations, indicating that further changes may be required. Nonetheless, the results suggest that a broader adoption of bottomless buckets and/or deficit accounting within conceptual rainfall runoff models may improve the realism of runoff projections under drying climate.

DOI bib
Towards more realistic runoff projections by removing limits on simulated soil moisture deficit
Keirnan Fowler, Gemma Coxon, Jim Freer, Wouter Knoben, Murray C. Peel, Thorsten Wagener, Andrew W. Western, Ross Woods, Lu Zhang, Keirnan Fowler, Gemma Coxon, Jim Freer, Wouter Knoben, Murray C. Peel, Thorsten Wagener, Andrew W. Western, Ross Woods, Lu Zhang
Journal of Hydrology, Volume 600

• Most conceptual bucket models have an upper limit on simulated soil moisture deficit. • Problems arise when the bucket “empties” because ET drops to unrealistic (low) levels. • Alternatives include bottomless buckets or deficit-based soil moisture accounting. • Here, we switch to a deficit-based scheme while keeping everything else constant. • Tested over historic drought, model performance and realism are enhanced. Rainfall-runoff models based on conceptual “buckets” are frequently used in climate change impact studies to provide runoff projections. When these buckets approach empty, the simulated evapotranspiration approaches zero, which places an implicit limit on the soil moisture deficit that can accrue within the model. Such models may cease to properly track the moisture deficit accumulating in reality as dry conditions continue, leading to overestimation of subsequent runoff and possible long-term bias under drying climate. Here, we suggest that model realism may be improved through alternatives which remove the upper limit on simulated soil moisture deficit, such as “bottomless” buckets or deficit-based soil moisture accounting. While some existing models incorporate such measures, no study until now has systematically assessed their impact on model realism under drying climate. Here, we alter a common bucket model by changing the soil moisture storage to a deficit accounting system in such a way as to remove the upper limit on simulated soil moisture deficit. Tested on 38 Australian catchments, the altered model is better able to track the decline in soil moisture at the end of seasonal dry periods, which leads to superior performance over varied historic climate, including the 13-year “Millennium” drought. However, groundwater and GRACE data reveal long-term trends that are not matched in simulations, indicating that further changes may be required. Nonetheless, the results suggest that a broader adoption of bottomless buckets and/or deficit accounting within conceptual rainfall runoff models may improve the realism of runoff projections under drying climate.

2020

DOI bib
Illuminating water cycle modifications and Earth system resilience in the Anthropocene
Tom Gleeson, Lan Wang‐Erlandsson, Miina Porkka, Samuel C. Zipper, Fernando Jaramillo, Dieter Gerten, Ingo Fetzer, Sarah Cornell, Luigi Piemontese, Line Gordon, Johan Rockström, Taikan Oki, Murugesu Sivapalan, Yoshihide Wada, Kate A. Brauman, Martina Flörke, Marc F. P. Bierkens, Bernhard Lehner, Patrick Keys, Matti Kummu, Thorsten Wagener, Simon Dadson, Tara J. Troy, Will Steffen, Malin Falkenmark, J. S. Famiglietti
Water Resources Research, Volume 56, Issue 4

Fresh water – the bloodstream of the biosphere – is at the centre of the planetary drama of the Anthropocene. Water fluxes and stores regulate the Earth’s climate and are essential for thriving aquatic and terrestrial ecosystems, as well as water, food and energy security. But the water cycle is also being modified by humans at an unprecedented scale and rate. A holistic understanding of freshwater’s role for Earth System resilience and the detection and monitoring of anthropogenic water cycle modifications across scales is urgent, yet existing methods and frameworks are not well suited for this. In this paper we highlight four core Earth System functions of water (hydroclimatic regulation, hydroecological regulation, storage, and transport) and key related processes. Building on systems and resilience theory, we review the evidence of regional-scale regime shifts and disruptions of the Earth System functions of water. We then propose a framework for detecting, monitoring, and establishing safe limits to water cycle modifications, and identify four possible spatially explicit methods for their quantification. In sum, this paper presents an ambitious scientific and policy Grand Challenge that could substantially improve our understanding of the role of water in the Earth System and cross-scale management of water cycle modifications that would be a complementary approach to existing water management tools.

DOI bib
The Water Planetary Boundary: Interrogation and Revision
Tom Gleeson, Lan Wang‐Erlandsson, Samuel C. Zipper, Miina Porkka, Fernando Jaramillo, Dieter Gerten, Ingo Fetzer, Sarah Cornell, Luigi Piemontese, Line Gordon, Johan Rockström, Taikan Oki, Murugesu Sivapalan, Yoshihide Wada, Kate A. Brauman, Martina Flörke, Marc F. P. Bierkens, Bernhard Lehner, Patrick Keys, Matti Kummu, Thorsten Wagener, Simon Dadson, Tara J. Troy, Will Steffen, Malin Falkenmark, J. S. Famiglietti
One Earth, Volume 2, Issue 3

The planetary boundaries framework proposes quantified guardrails to human modification of global environmental processes that regulate the stability of the planet and has been considered in sustainability science, governance, and corporate management. However, the planetary boundary for human freshwater use has been critiqued as a singular measure that does not reflect all types of human interference with the complex global water cycle and Earth System. We suggest that the water planetary boundary will be more scientifically robust and more useful in decision-making frameworks if it is redesigned to consider more specifically how climate and living ecosystems respond to changes in the different forms of water on Earth: atmospheric water, frozen water, groundwater, soil moisture, and surface water. This paper provides an ambitious scientific road map to define a new water planetary boundary consisting of sub-boundaries that account for a variety of changes to the water cycle.

2019

DOI bib
Hillslope Hydrology in Global Change Research and Earth System Modeling
Ying Fan, Martyn Clark, David M. Lawrence, Sean Swenson, Lawrence E. Band, Susan L. Brantley, P. D. Brooks, W. E. Dietrich, Alejandro N. Flores, Gordon E. Grant, James W. Kirchner, D. S. Mackay, Jeffrey J. McDonnell, P. C. D. Milly, Pamela Sullivan, C. Tague, Hoori Ajami, Nathaniel W. Chaney, Andreas Hartmann, P. Hazenberg, J. P. McNamara, Jon D. Pelletier, J. Perket, Elham Rouholahnejad Freund, Thorsten Wagener, Xubin Zeng, R. Edward Beighley, Jonathan Buzan, Maoyi Huang, Ben Livneh, Binayak P. Mohanty, Bart Nijssen, Mohammad Safeeq, Chaopeng Shen, Willem van Verseveld, John Volk, Dai Yamazaki
Water Resources Research, Volume 55, Issue 2

Earth System Models (ESMs) are essential tools for understanding and predicting global change, but they cannot explicitly resolve hillslope‐scale terrain structures that fundamentally organize water, energy, and biogeochemical stores and fluxes at subgrid scales. Here we bring together hydrologists, Critical Zone scientists, and ESM developers, to explore how hillslope structures may modulate ESM grid‐level water, energy, and biogeochemical fluxes. In contrast to the one‐dimensional (1‐D), 2‐ to 3‐m deep, and free‐draining soil hydrology in most ESM land models, we hypothesize that 3‐D, lateral ridge‐to‐valley flow through shallow and deep paths and insolation contrasts between sunny and shady slopes are the top two globally quantifiable organizers of water and energy (and vegetation) within an ESM grid cell. We hypothesize that these two processes are likely to impact ESM predictions where (and when) water and/or energy are limiting. We further hypothesize that, if implemented in ESM land models, these processes will increase simulated continental water storage and residence time, buffering terrestrial ecosystems against seasonal and interannual droughts. We explore efficient ways to capture these mechanisms in ESMs and identify critical knowledge gaps preventing us from scaling up hillslope to global processes. One such gap is our extremely limited knowledge of the subsurface, where water is stored (supporting vegetation) and released to stream baseflow (supporting aquatic ecosystems). We conclude with a set of organizing hypotheses and a call for global syntheses activities and model experiments to assess the impact of hillslope hydrology on global change predictions.

DOI bib
Developing observational methods to drive future hydrological science: Can we make a start as a community?
Keith Beven, Anita Asadullah, Paul Bates, Eleanor Blyth, Nick A. Chappell, Stewart Child, Hannah Cloke, Simon Dadson, Nick Everard, Hayley J. Fowler, Jim Freer, David M. Hannah, Kate Heppell, Joseph Holden, Rob Lamb, Huw Lewis, Gerald Morgan, Louise Parry, Thorsten Wagener
Hydrological Processes, Volume 34, Issue 3

Hydrology is still, and for good reasons, an inexact science, even if evolving hydrological understanding has provided a basis for improved water management for at least the last three millennia. The limitations of that understanding have, however, become much more apparent and important in the last century as the pressures of increasing populations, and the anthropogenic impacts on catchment forcing and responses, have intensified. At the same time, the sophistication of hydrological analyses and models has been developing rapidly, often driven more by the availability of computational power and geographical data sets than any real increases in understanding of hydrological processes. This sophistication has created an illusion of real progress but a case can be made that we are still rather muddling along, limited by the significant uncertainties in hydrological observations, knowledge of catchment characteristics and related gaps in conceptual understanding, particularly of the sub-surface. These knowledge gaps are illustrated by the fact that for many catchments we cannot close the water balance without significant uncertainty, uncertainty that is often neglected in evaluating models for practical applications.
Search
Co-authors
Venues