Ulli Seibt


2021

DOI bib
Tower‐Based Remote Sensing Reveals Mechanisms Behind a Two‐phased Spring Transition in a Mixed‐Species Boreal Forest
Zoe Pierrat, Magali F. Nehemy, Alexandre Roy, Troy S. Magney, Nicholas C. Parazoo, Colin P. Laroque, Christoforos Pappas, Oliver Sonnentag, Katja Großmann, David R. Bowling, Ulli Seibt, Alexandra Ramirez, Bruce Johnson, Warren Helgason, Alan Barr, Jochen Stutz
Journal of Geophysical Research: Biogeosciences, Volume 126, Issue 5

The boreal forest is a major contributor to the global climate system, therefore, reducing uncertainties in how the forest will respond to a changing climate is critical. One source of uncertainty is the timing and drivers of the spring transition. Remote sensing can provide important information on this transition, but persistent foliage greenness, seasonal snow cover, and a high prevalence of mixed forest stands (both deciduous and evergreen species) complicate interpretation of these signals. We collected tower-based remotely sensed data (reflectance-based vegetation indices and Solar-Induced Chlorophyll Fluorescence [SIF]), stem radius measurements, gross primary productivity, and environmental conditions in a boreal mixed forest stand. Evaluation of this data set shows a two-phased spring transition. The first phase is the reactivation of photosynthesis and transpiration in evergreens, marked by an increase in relative SIF, and is triggered by thawed stems, warm air temperatures, and increased available soil moisture. The second phase is a reduction in bulk photoprotective pigments in evergreens, marked by an increase in the Chlorophyll-Carotenoid Index. Deciduous leaf-out occurs during this phase, marked by an increase in all remotely sensed metrics. The second phase is controlled by soil thaw. Our results demonstrate that remote sensing metrics can be used to detect specific physiological changes in boreal tree species during the spring transition. The two-phased transition explains inconsistencies in remote sensing estimates of the timing and drivers of spring recovery. Our results imply that satellite-based observations will improve by using a combination of vegetation indices and SIF, along with species distribution information.

2020

DOI bib
COSORE: A community database for continuous soil respiration and other soil‐atmosphere greenhouse gas flux data
Ben Bond‐Lamberty, Danielle Christianson, Avni Malhotra, Stephanie Pennington, Debjani Sihi, Amir AghaKouchak, Hassan Anjileli, M. Altaf Arain, Juan J. Armestó, Samaneh Ashraf, Mioko Ataka, Dennis Baldocchi, T. Andrew Black, Nina Buchmann, Mariah S. Carbone, Shih Chieh Chang, Patrick Crill, Peter S. Curtis, Eric A. Davidson, Ankur R. Desai, John E. Drake, Tarek S. El‐Madany, Michael Gavazzi, Carolyn-Monika Görres, Christopher M. Gough, Michael L. Goulden, Jillian W. Gregg, O. Gutiérrez del Arroyo, Jin Sheng He, Takashi Hirano, Anya M. Hopple, Holly Hughes, Järvi Järveoja, Rachhpal S. Jassal, Jinshi Jian, Haiming Kan, Jason P. Kaye, Yuji Kominami, Naishen Liang, David A. Lipson, Catriona A. Macdonald, Kadmiel Maseyk, Kayla Mathes, Marguerite Mauritz, Melanie A. Mayes, Steven G. McNulty, Guofang Miao, Mirco Migliavacca, S. D. Miller, Chelcy Ford Miniat, Jennifer Goedhart Nietz, Mats Nilsson, Asko Noormets, Hamidreza Norouzi, Christine O’Connell, Bruce Osborne, Cecilio Oyonarte, Zhuo Pang, Matthias Peichl, Elise Pendall, Jorge F. Perez‐Quezada, Claire L. Phillips, Richard P. Phillips, James W. Raich, Alexandre A. Renchon, Nadine K. Ruehr, Enrique P. Sánchez‐Cañete, Matthew Saunders, K. E. Savage, Marion Schrumpf, Russell L. Scott, Ulli Seibt, Whendee L. Silver, Wu Sun, Daphne Szutu, Kentaro Takagi, Masahiro Takagi, Masaaki Teramoto, Mark G. Tjoelker, Susan E. Trumbore, Masahito Ueyama, Rodrigo Vargas, R. K. Varner, Joseph Verfaillie, Christoph S. Vogel, Jinsong Wang, G. Winston, Tana E. Wood, Juying Wu, Thomas Wutzler, Jiye Zeng, Tianshan Zha, Quan Zhang, Junliang Zou
Global Change Biology, Volume 26, Issue 12

Globally, soils store two to three times as much carbon as currently resides in the atmosphere, and it is critical to understand how soil greenhouse gas (GHG) emissions and uptake will respond to ongoing climate change. In particular, the soil-to-atmosphere CO2 flux, commonly though imprecisely termed soil respiration (RS ), is one of the largest carbon fluxes in the Earth system. An increasing number of high-frequency RS measurements (typically, from an automated system with hourly sampling) have been made over the last two decades; an increasing number of methane measurements are being made with such systems as well. Such high frequency data are an invaluable resource for understanding GHG fluxes, but lack a central database or repository. Here we describe the lightweight, open-source COSORE (COntinuous SOil REspiration) database and software, that focuses on automated, continuous and long-term GHG flux datasets, and is intended to serve as a community resource for earth sciences, climate change syntheses and model evaluation. Contributed datasets are mapped to a single, consistent standard, with metadata on contributors, geographic location, measurement conditions and ancillary data. The design emphasizes the importance of reproducibility, scientific transparency and open access to data. While being oriented towards continuously measured RS , the database design accommodates other soil-atmosphere measurements (e.g. ecosystem respiration, chamber-measured net ecosystem exchange, methane fluxes) as well as experimental treatments (heterotrophic only, etc.). We give brief examples of the types of analyses possible using this new community resource and describe its accompanying R software package.
Search
Co-authors
Venues