2022
DNA metabarcoding can provide a high-throughput and rapid method for characterizing responses of communities to environmental stressors. However, within bulk samples, DNA metabarcoding hardly distinguishes live from the dead organisms. Here, both DNA and RNA metabarcoding were applied and compared in experimental freshwater mesocosms conducted for assessment of ecotoxicological responses of zooplankton communities to remediation treatment until 38 days post oil-spill. Furthermore, a novel indicator of normalized vitality (NV), sequence counts of RNA metabarcoding normalized by that of DNA metabarcoding, was developed for assessment of ecological responses. DNA and RNA metabarcoding detected similar taxa richness and rank of relative abundances. Both DNA and RNA metabarcoding demonstrated slight shifts in measured α-diversities in response to treatments. NV presented relatively greater magnitudes of differential responses of community compositions to treatments compared to DNA or RNA metabarcoding. NV declined from the start of the experiment (3 days pre-spill) to the end (38 days post-spill). NV also differed between Rotifer and Arthropoda, possibly due to differential life histories and sizes of organisms. NV could be a useful indicator for characterizing ecological responses to anthropogenic influence; however, the biology of target organisms and subsequent RNA production need to be considered. • RNA normalized by DNA metabarcoding functions as normalized vitality. • Normalized vitality reflected temporal dynamics of zooplankton communities. • Normalized vitality revealed greater community differences between treatments. • Rotifer had greatest normalized vitality compared to Arthropoda.
DOI
bib
abs
Effects of in situ experimental selenium exposure on finescale dace (Phoxinus neogaeus) gut microbiome
Phillip Ankley,
Stephanie D. Graves,
Yuwei Xie,
Abigail DeBofsky,
Alana Weber,
Markus Brinkmann,
Vince Palace,
Karsten Liber,
Markus Hecker,
David M. Janz,
John P. Giesy
Environmental Research, Volume 212
Selenium (Se) is an environmental contaminant of global concern that can cause adverse effects in fish at elevated levels. Fish gut microbiome play essential roles in gastrointestinal function and host health and can be perturbed by environmental contaminants, including metals and metalloids. Here, an in-situ Se exposure of female finescale dace (Phoxinus neogaeus) using mesocosms was conducted to determine the impacts of Se accumulation on the gut microbiome and morphometric endpoints. Prior to this study, the gut microbiome of finescale dace, a widespread Cyprinid throughout North America, had not been characterized. Exposure to Se caused a hormetic response of alpha diversity of the gut microbiome, with greater diversity at the lesser concentration of 1.6 μg Se/L, relative to that of fish exposed to the greater concentration of 5.6 μg Se/L. Select gut microbiome taxa of fish were differentially abundant between aqueous exposure concentrations and significantly correlated with liver-somatic index (LSI). The potential effects of gut microbiome dysbiosis on condition of wild fish might be a consideration when assessing adverse effects of Se in aquatic environments. More research regarding effects of Se on field-collected fish gut microbiome and the potential adverse effects or benefits on the host is warranted.
2021
DOI
bib
abs
Using zooplankton metabarcoding to assess the efficacy of different techniques to clean-up an oil-spill in a boreal lake
Phillip Ankley,
Yuwei Xie,
Tyler A. Black,
Abigail DeBofsky,
McKenzie Perry,
Michael Paterson,
Mark L. Hanson,
Scott N. Higgins,
John P. Giesy,
Vince Palace
Aquatic Toxicology, Volume 236
Abstract Regulators require adequate information to select best practices with less ecosystem impacts for remediation of freshwater ecosystems after oil spills. Zooplankton are valuable indicators of aquatic ecosystem health as they play pivotal roles in biochemical cycles while stabilizing food webs. Compared with morphological identification, metabarcoding holds promise for cost-effective, high-throughput, and benchmarkable biomonitoring of zooplankton communities. The objective of this study was to apply DNA and RNA metabarcoding of zooplankton for ecotoxicological assessment and compare it with traditional morphological identification in experimental shoreline enclosures in a boreal lake. These identification methods were also applied in context of assessing response of the zooplankton community exposed to simulated spills of diluted bitumen (dilbit), with experimental remediation practices (enhanced monitored natural recovery and shoreline cleaner application). Metabarcoding detected boreal zooplankton taxa up to the genus level, with a total of 24 shared genera, and while metabarcoding-based relative abundance served as an acceptable proxy for biomass inferred by morphological identification (ρ ≥ 0.52). Morphological identification determined zooplankton community composition changes due to treatments at 11 days post-spill (PERMANOVA, p = 0.0143) while metabarcoding methods indicated changes in zooplankton richness and communities at 38 days post-spill (T-test, p