2023
DOI
bib
abs
Phosphorus dynamics in agricultural surface runoff at the edge of the field and in ditches during overbank flooding conditions in the Red River Valley
Vivekananthan Kokulan,
Matthew Q. Morison,
Janina M. Plach,
Geneviève Ali,
David A. Lobb,
Merrin L. Macrae,
Vivekananthan Kokulan,
Matthew Q. Morison,
Janina M. Plach,
Geneviève Ali,
David A. Lobb,
Merrin L. Macrae
Canadian Water Resources Journal / Revue canadienne des ressources hydriques, Volume 48, Issue 3
Agricultural fields in the Red River Valley of the Northern Great Plains are located on flat clay soils, often drained by shallow, roadside ditches that are not graded and lacking relief. These conditions can result in flow reversals and subsequent flooding of adjacent fields during large runoff events, which can mobilize phosphorus (P). Surface runoff from two agricultural fields and their adjacent ditches was monitored from 2015 to 2017 in southern Manitoba, Canada. Overbank flooding of fields adjacent to ditches was observed in 5 of 21 hydrologic events, and such events dominated annual runoff and P budgets (>83% of losses over the 3-year study period). Flooding events were often dominated by soluble P fractions (57–67%) relative to events where flooding was not observed (39–63%). Concentrations of soluble reactive P in water standing on fields increased with time during flooding events, suggesting that P was mobilized during such events; however, the source of the soluble reactive P is not clear. This study has highlighted temporal differences in hydrologic and biogeochemical interactions between fields and ditches and demonstrated the need for an improved understanding of mechanisms of P mobilization in the landscape, which has direct implications for predicting P mobility in agricultural watersheds.
DOI
bib
abs
Phosphorus dynamics in agricultural surface runoff at the edge of the field and in ditches during overbank flooding conditions in the Red River Valley
Vivekananthan Kokulan,
Matthew Q. Morison,
Janina M. Plach,
Geneviève Ali,
David A. Lobb,
Merrin L. Macrae,
Vivekananthan Kokulan,
Matthew Q. Morison,
Janina M. Plach,
Geneviève Ali,
David A. Lobb,
Merrin L. Macrae
Canadian Water Resources Journal / Revue canadienne des ressources hydriques, Volume 48, Issue 3
Agricultural fields in the Red River Valley of the Northern Great Plains are located on flat clay soils, often drained by shallow, roadside ditches that are not graded and lacking relief. These conditions can result in flow reversals and subsequent flooding of adjacent fields during large runoff events, which can mobilize phosphorus (P). Surface runoff from two agricultural fields and their adjacent ditches was monitored from 2015 to 2017 in southern Manitoba, Canada. Overbank flooding of fields adjacent to ditches was observed in 5 of 21 hydrologic events, and such events dominated annual runoff and P budgets (>83% of losses over the 3-year study period). Flooding events were often dominated by soluble P fractions (57–67%) relative to events where flooding was not observed (39–63%). Concentrations of soluble reactive P in water standing on fields increased with time during flooding events, suggesting that P was mobilized during such events; however, the source of the soluble reactive P is not clear. This study has highlighted temporal differences in hydrologic and biogeochemical interactions between fields and ditches and demonstrated the need for an improved understanding of mechanisms of P mobilization in the landscape, which has direct implications for predicting P mobility in agricultural watersheds.
2022
DOI
bib
abs
Influence of climate, topography, and soil type on soil extractable phosphorus in croplands of northern glacial‐derived landscapes
Janina M. Plach,
Merrin L. Macrae,
Henry F. Wilson,
Diogo Costa,
Vivekananthan Kokulan,
David A. Lobb,
Kevin W. King
Journal of Environmental Quality, Volume 51, Issue 4
Delineating the relative solubility of soil phosphorus (P) in agricultural landscapes is essential to predicting potential P mobilization in the landscape and can improve nutrient management strategies. This study describes spatial patterns of soil extractable P (easily, moderately, and poorly soluble P) in agricultural landscapes of the Red River basin and the southern Great Lakes region. Surface soils (0-30 cm) and select deeper cores (0-90 cm) were collected from 10 cropped fields ranging in terrain (near-level to hummocky), soil texture (clay to loam), composition (calcareous to noncalcareous), and climate across these differing glacial landscapes. Poorly soluble P dominated (up to 91%) total extractable P in the surface soils at eight sites. No differences in the relative solubilities of soil extractable P with microtopography were apparent in landscapes without defined surface depressions. In contrast, in landscapes with pronounced surface depressions, increased easily soluble P (Sol-P), and decreased soil P sorption capacity were found in soil in wetter, low-slope zones relative to drier upslope locations. The Sol-P pool was most important to soil P retention (up to 28%) within the surface depressions of the Red River basin and at sites with low-carbonate soils in the southern Lake Erie watershed (up to 28%), representing areas at elevated risk of soil P remobilization. This study demonstrates interrelationships among soil extractable P pools, soil development, and soil moisture regimes in agricultural glacial landscapes and provides insight into identifying potential areas for soil P remobilization and associated P availability to crops and runoff.
2021
DOI
bib
abs
Temporal variability in water and nutrient movement through vertisols into agricultural tile drains in the northern Great Plains
Vivekananthan Kokulan,
Merrin L. Macrae,
Geneviève Ali,
David A. Lobb,
Matthew Q. Morison,
B.C. Brooks,
Vivekananthan Kokulan,
Merrin L. Macrae,
Geneviève Ali,
David A. Lobb,
Matthew Q. Morison,
B.C. Brooks
Journal of Soil and Water Conservation
Agricultural tile drainage is expanding in the northern Great Plains of North America. Given ongoing environmental and political concerns related to the eutrophication of Lake Winnipeg in Canada and the potential for tile drains to transport significant quantities of nutrients from agricultural fields, an improved understanding of nutrient dynamics in tile drains in this region is needed. This study characterized seasonal patterns in tile flow and chemistry under variable hydroclimatic conditions and related this variance to temporal variability in soil hydraulic properties in a farm in southern Manitoba, Canada, from 2015 to 2017. Tile flow, soil hydraulic properties, and groundwater table position all varied seasonally, as did the chemistry of tile drain effluent. The majority of annual tile discharge, which occurred in late spring, appears to have been contributed by shallow groundwater, primarily through soil matrix pathways. At these greater tile flow rates, concentrations of soluble reactive phosphorus (SRP) and total phosphorus (TP) were low (<0.03 mg L<sup>–1</sup> SRP, <0.04 mg L<sup>–1</sup> TP), but concentrations of nitrate (NO<sub>3</sub>-N) were high (20 to 25 mg L<sup>–1</sup> NO<sub>3</sub>-N). In contrast, tile flows outside of this peak period appeared to be primarily attributed to preferential flow pathways through frozen (snowmelt) and dry soil cracks (summer). Phosphorus (P) concentrations were greater during snowmelt and summer (~0.05 mg L<sup>–1</sup> SRP, ~0.1 mg L<sup>–1</sup> TP) but did not produce significant nutrient loads due to the minimal tile discharge rates (<1 mm d<sup>–1</sup>). This work suggests that the expansion of tile drainage may not exacerbate water quality issues involving P in the northern Great Plains but may increase nitrogen (N) loads in local water bodies.
DOI
bib
abs
Temporal variability in water and nutrient movement through vertisols into agricultural tile drains in the northern Great Plains
Vivekananthan Kokulan,
Merrin L. Macrae,
Geneviève Ali,
David A. Lobb,
Matthew Q. Morison,
B.C. Brooks,
Vivekananthan Kokulan,
Merrin L. Macrae,
Geneviève Ali,
David A. Lobb,
Matthew Q. Morison,
B.C. Brooks
Journal of Soil and Water Conservation
Agricultural tile drainage is expanding in the northern Great Plains of North America. Given ongoing environmental and political concerns related to the eutrophication of Lake Winnipeg in Canada and the potential for tile drains to transport significant quantities of nutrients from agricultural fields, an improved understanding of nutrient dynamics in tile drains in this region is needed. This study characterized seasonal patterns in tile flow and chemistry under variable hydroclimatic conditions and related this variance to temporal variability in soil hydraulic properties in a farm in southern Manitoba, Canada, from 2015 to 2017. Tile flow, soil hydraulic properties, and groundwater table position all varied seasonally, as did the chemistry of tile drain effluent. The majority of annual tile discharge, which occurred in late spring, appears to have been contributed by shallow groundwater, primarily through soil matrix pathways. At these greater tile flow rates, concentrations of soluble reactive phosphorus (SRP) and total phosphorus (TP) were low (<0.03 mg L<sup>–1</sup> SRP, <0.04 mg L<sup>–1</sup> TP), but concentrations of nitrate (NO<sub>3</sub>-N) were high (20 to 25 mg L<sup>–1</sup> NO<sub>3</sub>-N). In contrast, tile flows outside of this peak period appeared to be primarily attributed to preferential flow pathways through frozen (snowmelt) and dry soil cracks (summer). Phosphorus (P) concentrations were greater during snowmelt and summer (~0.05 mg L<sup>–1</sup> SRP, ~0.1 mg L<sup>–1</sup> TP) but did not produce significant nutrient loads due to the minimal tile discharge rates (<1 mm d<sup>–1</sup>). This work suggests that the expansion of tile drainage may not exacerbate water quality issues involving P in the northern Great Plains but may increase nitrogen (N) loads in local water bodies.
2019
This study quantified the contributions of overland and tile flow to total runoff (sum of overland and tile flow) and nutrient losses in a Vertisolic soil in the Red River valley (Manitoba, Canada), a region with a cold climate where tile drainage is rapidly expanding. Most annual runoff occurred as overland flow (72-89%), during spring snowmelt and large spring and summer storms. Tile drains did not flow in early spring due to frozen ground. Although tiles flowed in late spring and summer (33-100% of event flow), this represented a small volume of annual runoff (10-25%), which is in stark contrast with what has been observed in other tile-drained landscapes. Median daily flow-weighted mean concentrations of soluble reactive P (SRP) and total P (TP) were significantly greater in overland flow than in tile flow ( < 0.001), but the reverse pattern was observed for NO-N ( < 0.001). Overland flow was the primary export pathway for both P and NO-N, accounting for >95% of annual SRP and TP and 50 to 60% of annual NO-N losses. Data suggest that tile drains do not exacerbate P export from Vertisols in the Red River valley because they are decoupled from the surface by soil-ice during snowmelt, which is the primary time for P loss. However, NO-N loading to downstream water bodies may be exacerbated by tiles, particularly during spring and summer storms after fertilizer application.
2018
Water quality problems are frequently influenced by hydrological processes, particularly in landscapes in which land drainage has been modified. The expansion of agricultural tile drainage in the Northern Great Plains of North America is occurring, yet is controversial due to persistent water quality problems such as eutrophication. Runoff‐generating mechanisms in North American tile‐drained landscapes in vertisolic soils have not been investigated but are important for understanding the impacts of tile drainage on water quantity and quality. This study evaluated the role of climate drivers on the activation of overland (OF) and tile (TF) flow and groundwater flow responses (GWT) on tile‐drained and nontile‐drained farm fields in Southern Manitoba, Canada. The response times of different flow paths (OF, TF, and GWT) were compared for 23 hydrological events (April–September 2015, 2016) to infer dominant runoff generation processes. Runoff responses (all pathways) were more rapid following higher intensity rainfall. Subsurface responses were hastened by wetter antecedent conditions in spring and delayed by the seasonal soil–ice layer. The activation of OF did not differ between the tiled and nontiled fields, suggesting that tile drains do little to reduce the occurrence of OF in this landscape. Rapid vertical preferential flow into tiles via preferential flow pathways was uncommon at our site, and the soil profile instead wet up from the top down. These conclusions have implications for the expansion of tile drainage and the impact of such an expansion on hydrological and biogeochemical processes in agricultural landscapes.