William T. Pluer


2023

DOI bib
Performance of simple low-cost edge-of-field filters for mitigating P losses in surface runoff from agricultural fields
R. Carlow, Janina M. Plach, William T. Pluer, W.V. Lam, Mazda Kompani-Zare, R. Brunke, Kevin McKague, Helen P. Jarvie, Merrin L. Macrae
Agricultural Water Management, Volume 284

Nutrient losses from agricultural fields are the largest sources of phosphorus (P) entering the Great Lakes in North America. Stacked conservation practices (CPs) may reduce P losses from individual fields. Simple low-cost, low disturbance, commercially available filters containing wood chips and phosphorus sorbing materials (PSM) were installed on two fields already using conservation practices in midwestern Ontario (ILD and LON) to quantify their ability to remove soluble reactive P (SRP), particulate P (PP), total P (TP) and total suspended sediments (TSS) from surface runoff. Laboratory tests on unused (new) and used (field) filter materials were also conducted to estimate P sorption and remobilization potentials. During the two-year study period, the filter retained 0.018 kg ha-1 of SRP, 0.38 kg ha-1 of PP, 0.4 kg ha-1 of TP and 8.75 kg ha-1 of TSS from surface runoff at the ILD site. In contrast, although the filter at LON removed 37 kg ha-1 of TSS and 0.07 kg ha-1 of PP, it released 0.22 kg ha-1 of SRP and 0.15 kg ha-1 TP. A reduction in filter efficacy was observed over time, particularly at the site with greater cumulative surface runoff and larger runoff events (LON). The majority of the SRP retained by the filter was held in a loosely bound form, thus, susceptible to P remobilization. The results of this study demonstrate that low-cost, simple PSMs have some potential to retain P from surface runoff, but their efficacy may decline over time and their P retention capability may differ with site hydrology (e.g., runoff volumes and velocity) and P supply.

DOI bib
Trade‐offs in nutrient and sediment losses in tile drainage from no‐till versus conventional conservation‐till cropping systems
Merrin L. Macrae, Janina M. Plach, R. Carlow, Christopher R. Little, Helen P. Jarvie, Kevin McKague, William T. Pluer, Pamela Joosse
Journal of Environmental Quality, Volume 52, Issue 5

Abstract Nutrient and soil loss from agricultural areas impairs surface water quality globally. In the Great Lakes region, increases in the frequency and magnitude of harmful and nuisance algal blooms in freshwater lakes have been linked to elevated phosphorus (P) losses from agricultural fields, some of which are transported via tile drainage. This study examined whether concentrations and loads of P fractions, total suspended sediments (TSS), nitrate (NO 3 − ), and ammonium (NH 4 + ) in tile drainage in a clay soil differed between a continuous no‐till system combining cover crops and surface broadcast fertilizer (no‐till cover crop [NTCC]), and a more conventional tillage system with shallow tillage, fertilizer incorporation and limited use of cover crops (conventional conservation‐till, CT). Both sites had modest soil fertility levels. Year‐round, high‐frequency observations of tile drainage flow and chemistry are described over 4 full water years and related to management practices on the associated fields. There were similar water yields in tile drainage between the two systems; however, losses of TSS, particulate P (PP), and NO 3 − were consistently greater from the CT site, which received larger quantities of fertilizer. In contrast, dissolved reactive P (DRP) losses were considerably greater from the NTCC site, offsetting the lower PP losses, such that there was little difference in TP losses between sites. Approximately 60% of the DRP losses from the NTCC site over the 4 years were associated with incidental losses following surface application of fertilizer in fall. This study provides insight into trade‐offs in controlling losses of different nutrient fractions using different management systems.

2022

DOI bib
Retention of phosphorus in soils receiving bunker silo effluent
William T. Pluer, Janina M. Plach, A Hassan, Dylan W. Price, Merrin L. Macrae
Journal of Environmental Management, Volume 323

The eutrophication of freshwater systems is a pervasive issue in North America and elsewhere, which has been linked to elevated phosphorus (P) loading from watersheds. Most excess P is thought to originate from non-point agricultural sources, and less attention has been given to small rural point sources, such as bunker silos on livestock farms. Sophisticated management practices are rarely used to attenuate nutrients from bunker silo effluent, leaving simple vegetated buffer strips or riparian zones to protect surface water; however, the efficacy of these systems or larger constructed treatment systems is unclear. This study compared two systems receiving bunker silo effluent, one a natural riparian system with a vegetated buffer strip that is the most common practice and the other a constructed treatment system with a forebay, slag filter, and swale. The study quantified P retention within various subsections of each system and characterized the forms of stored P to infer the potential for remobilization. Results indicate that soils receiving bunker silo effluent represent considerable stores of legacy P in the landscape (750 and 3400 kg ha−1), the majority of which is stored in labile forms that may be vulnerable to remobilization under the waterlogged conditions that often occur in management practices and riparian zones. Some areas of the systems were able to store considerably more P than others, with the slag filter showing the greatest treatment efficacy. Spatial variability in stored P was apparent, where sections of the systems that directly received effluent retained more P than sections located farther away from bunker silos (indirect inputs). Results indicate that passive treatment systems become P saturated over time, limiting their longterm P removal efficacy. The efficacy of these systems may be improved with the inclusion of sorptive materials as a slag filter within the constructed treatment system significantly increased the life expectancy of that system. Greater understanding of both quantity and forms of P retained in systems and soils receiving bunker silo effluent will help develop management strategies that are more effective and longer-lasting for reducing excess P losses to surface water bodies.

2020

DOI bib
Contribution of preferential flow to tile drainage varies spatially and temporally
William T. Pluer, Merrin L. Macrae, Aaron Buckley, Keith Reid
Vadose Zone Journal, Volume 19, Issue 1

Tile drainage of agricultural fields is a conduit for nutrient losses. Preferential flow in the soil can more directly connect surface runoff with tile drainage compared with matrix flow, which may also increase P losses. In this study, water temperature was monitored in surface runoff and tile drainage and electrical conductivity (EC) was measured in tile drainage at two sites in southern Ontario with different soil types (i.e., clay and loam). These data were used to estimate the percentage of preferential flow in tile drainage based on end member mixing. Estimates using temperature were compared with estimates using EC, and both were evaluated across seasons and hydrographs and compared with P concentration and load data. There was strong correlation (r = .83) between estimates of preferential flow using the two methods, but due to variability in surface temperatures, EC provided a less flashy estimate for preferential flow (Durbin–Watson statistics of 0.34 for temperature and 0.09 for EC). Preferential flow accounted for a higher percentage of tile drainage flow in clay soil than loam, but percentages were not significantly different between seasons or timing within events. Phosphorus concentrations and loads were weakly correlated with preferential flow, suggesting that P transport was influenced by other factors as well. Although further work is necessary to calibrate these methods for estimating preferential flow from continuously monitored temperature and EC, this technique can be applied to already collected data to model and test posited explanations of observed phenomena in P, other nutrients, and water transport from tile‐drained agricultural land.

2019

DOI bib
Agricultural Edge‐of‐Field Phosphorus Losses in Ontario, Canada: Importance of the Nongrowing Season in Cold Regions
Janina M. Plach, William T. Pluer, Merrin L. Macrae, Mazda Kompani-Zare, Kevin McKague, R. Carlow, R. Brunke
Journal of Environmental Quality, Volume 48, Issue 4

Agricultural P losses are a global economic and water quality concern. Much of the current understanding of P dynamics in agricultural systems has been obtained from rainfall-driven runoff, and less is known about cold-season processes. An improved understanding of the magnitude, form, and transport flow paths of P losses from agricultural croplands year round, and the climatic drivers of these processes, is needed to prioritize and evaluate appropriate best management practices (BMPs) to protect soil-water quality in cold regions. This study examines multiyear, year-round, high-frequency edge-of-field P losses (soluble reactive P and total P [TP]) in overland flow and tile drainage from three croplands in southern Ontario, Canada. Annual and seasonal budgets for water, P, and estimates of field P budgets (including fertilizer inputs, crop uptake, and runoff) were calculated for each site. Annual edge-of-field TP loads ranged from 0.18 to 1.93 kg ha yr (mean = 0.59 kg ha yr) across the region, including years with fertilizer application. Tile drainage dominated runoff across sites, whereas the contribution of tiles and overland flow to P loss differed regionally, likely related to site-specific topography, soil type, and microclimate. The nongrowing season was the dominant period for runoff and P loss across sites, where TP loss during this period was often associated with overland flow during snowmelt. These results indicate that emphasis should be placed on BMPs that are effective during both the growing and nongrowing season in cold regions, but that the suitability of various BMPs may vary for different sites.

DOI bib
Evaluating Hydrologic Response in Tile‐Drained Landscapes: Implications for Phosphorus Transport
Merrin L. Macrae, Genevieve Ali, Kevin W. King, Janina M. Plach, William T. Pluer, Mark R. Williams, Matthew Q. Morison, Wozhan Tang
Journal of Environmental Quality, Volume 48, Issue 5

Phosphorus (P) loss in agricultural discharge has typically been associated with surface runoff; however, tile drains have been identified as a key P pathway due to preferential transport. Identifying when and where these pathways are active may establish high-risk periods and regions that are vulnerable for P loss. A synthesis of high-frequency, runoff data from eight cropped fields across the Great Lakes region of North America over a 3-yr period showed that both surface and tile flow occurred year-round, although tile flow occurred more frequently. The relative timing of surface and tile flow activation was classified into four response types to infer runoff-generation processes. Response types were found to vary with season and soil texture. In most events across all sites, tile responses preceded surface flow, whereas the occurrence of surface flow prior to tile flow was uncommon. The simultaneous activation of pathways, indicating rapid connectivity through the vadose zone, was seldom observed at the loam sites but occurred at clay sites during spring and summer. Surface flow at the loam sites was often generated as saturation-excess, a phenomenon rarely observed on the clay sites. Contrary to expectations, significant differences in P loads in tiles were not apparent under the different response types. This may be due to the frequency of the water quality sampling or may indicate that factors other than surface-tile hydrologic connectivity drive tile P concentrations. This work provides new insight into spatial and temporal differences in runoff mechanisms in tile-drained landscapes.