Xianli Wang


2019

DOI bib
Evaluation of Gridded Precipitation Data and Interpolation Methods for Forest Fire Danger Rating in Alberta, Canada
Xinli Cai, Xianli Wang, Piyush Jain, Mike Flannigan
Journal of Geophysical Research: Atmospheres, Volume 124, Issue 1

The Canadian Forest Fire Weather Index System is the primary measurement of wildfire danger in Canada. Interpolating daily precipitation, one of the inputs for the Fire Weather Index System is a key challenge in areas without sufficient weather stations. This work evaluates the performance of gridded precipitation from the Canadian Precipitation Analysis (CaPA) System and six interpolation methods to achieve the best fire danger rating in Alberta, Canada. Results show that the CaPA System has only average performance due to limited radar coverage (10%) in the forested region; however, using the CaPA System as a covariate with regression kriging generates significantly better precipitation estimates. Ordinary kriging, regression kriging with elevation as a covariate, and the thin‐plate smoothed spline are methods with similar performance. Fuel moisture codes of the Fire Weather Index System respond differently to precipitation amounts due to differences in their time constants for drying. Fine fuels with a short drying time (Fine Fuel Moisture Code) are best estimated by the CaPA System because of its enhanced skill in estimating small precipitation events. Compacted organic fuels with longer drying times (Duff Moisture Code and Drought Code) are best estimated by regression kriging with CaPA because it better predicts significant precipitation events. The dense fire weather station network in our study area (~3.0 stations/10,000 km2) allows us to perform a sensitivity analysis, and we find that a threshold of >0.5 stations/10,000 km2 is needed for regression kriging with CaPA to become appreciably better than the CaPA System.

DOI bib
Fire-regime changes in Canada over the last half century
Chelene C. Hanes, Xianli Wang, Piyush Jain, Marc‐André Parisien, John M. Little, Mike Flannigan
Canadian Journal of Forest Research, Volume 49, Issue 3

Contemporary fire regimes of Canadian forests have been well documented based on forest fire records between the late 1950s to 1990s. Due to known limitations of fire datasets, an analysis of changes in fire-regime characteristics could not be easily undertaken. This paper presents fire-regime trends nationally and within two zonation systems, the homogeneous fire-regime zones and ecozones, for two time periods, 1959–2015 and 1980–2015. Nationally, trends in both area burned and number of large fires (≥200 ha) have increased significantly since 1959, which might be due to increases in lightning-caused fires. Human-caused fires, in contrast, have shown a decline. Results suggest that large fires have been getting larger over the last 57 years and that the fire season has been starting approximately one week earlier and ending one week later. At the regional level, trends in fire regimes are variable across the country, with fewer significant trends. Area burned, number of large fires, and lightning-caused fires are increasing in most of western Canada, whereas human-caused fires are either stable or declining throughout the country. Overall, Canadian forests appear to have been engaged in a trajectory towards more active fire regimes over the last half century.

DOI bib
A Regional-Scale Index for Assessing the Exposure of Drinking-Water Sources to Wildfires
François Robinne, Kevin D. Bladon, U. Silins, Monica B. Emelko, Mike D. Flannigan, Marc‐André Parisien, Xianli Wang, S. W. Kienzle, Diane Dupont
Forests, Volume 10, Issue 5

Recent human-interface wildfires around the world have raised concerns regarding the reliability of freshwater supply flowing from severely burned watersheds. Degraded source water quality can often be expected after severe wildfire and can pose challenges to drinking water facilities by straining treatment response capacities, increasing operating costs, and jeopardizing their ability to supply consumers. Identifying source watersheds that are dangerously exposed to post-wildfire hydrologic changes is important for protecting community drinking-water supplies from contamination risks that may lead to service disruptions. This study presents a spatial index of watershed exposure to wildfires in the province of Alberta, Canada, where growing water demands coupled with increasing fire activity threaten municipal drinking-water supplies. Using a multi-criteria analysis design, we integrated information regarding provincial forest cover, fire danger, source water volume, source-water origin (i.e., forested/un-forested), and population served. We found that (1) >2/3 of the population of the province relies on drinking-water supplies originating in forested watersheds, (2) forest cover is the most important variable controlling final exposure scores, and (3) watersheds supplying small drinking water treatment plants are particularly exposed, especially in central Alberta. The index can help regional authorities prioritize the allocation of risk management resources to mitigate adverse impacts from wildfire. The flexible design of this tool readily allows its deployment at larger national and continental scales to inform broader water security frameworks.

2018

DOI bib
Potential impacts of climate change on the habitat of boreal woodland caribou
Quinn E. Barber, Marc‐André Parisien, Ellen Whitman, Diana Stralberg, Chris J. Johnson, Martin‐Hugues St‐Laurent, Evan R. DeLancey, David T. Price, Dominique Arseneault, Xianli Wang, Mike D. Flannigan
Ecosphere, Volume 9, Issue 10

Boreal woodland caribou (Rangifer tarandus caribou) are currently listed as threatened in Canada, with populations in the province of Alberta expected to decline as much as 50 percent over the next 8–15 yr. We assessed the future of caribou habitat across a region of northeast Alberta using a model of habitat-quality and projections of future climate from three general circulation models. We used mapped climatic and topo-edaphic properties to project future upland vegetation cover and a fire simulation model to project the frequency and extent of wildfires. Based on those projections, we quantified the future habitat of caribou according to estimates of nutritional resources and predation risk derived from vegetation cover type and stand age. Grassland vegetation covered up to half of the study area by the 2080s, expanding from >1% in the present and contributing to a significant contraction in mixedwood and coniferous forests. This change in vegetation would increase the risk of predation and disease, as habitat becomes more suitable for white-tailed deer (Odocoileus virginianus) and, consequently, gray wolves (Canis lupus). Borne out, these changes would severely compromise the long-term persistence of caribou in the boreal forest of Alberta.