Xiaolan Xu


2021

DOI bib
Review Article: Global Monitoring of Snow Water Equivalent using High Frequency Radar Remote Sensing
Leung Tsang, Michael Durand, Chris Derksen, Ana P. Barros, Do‐Hyuk Kang, Hans Lievens, Hans‐Peter Marshall, Jiyue Zhu, Joel T. Johnson, Joshua King, Juha Lemmetyinen, Melody Sandells, Nick Rutter, Paul Siqueira, A. W. Nolin, Batu Osmanoglu, Carrie Vuyovich, Edward Kim, Drew Taylor, Ioanna Merkouriadi, Ludovic Brucker, Mahdi Navari, Marie Dumont, Richard Kelly, Rhae Sung Kim, Tien-Hao Liao, Xiaolan Xu, Leung Tsang, Michael Durand, Chris Derksen, Ana P. Barros, Do‐Hyuk Kang, Hans Lievens, Hans‐Peter Marshall, Jiyue Zhu, Joel T. Johnson, Joshua King, Juha Lemmetyinen, Melody Sandells, Nick Rutter, Paul Siqueira, A. W. Nolin, Batu Osmanoglu, Carrie Vuyovich, Edward Kim, Drew Taylor, Ioanna Merkouriadi, Ludovic Brucker, Mahdi Navari, Marie Dumont, Richard Kelly, Rhae Sung Kim, Tien-Hao Liao, Xiaolan Xu

Abstract. Seasonal snow cover is the largest single component of the cryosphere in areal extent, covering an average of 46 million square km of Earth's surface (31 % of the land area) each year, and is thus an important expression of and driver of the Earth’s climate. In recent years, Northern Hemisphere spring snow cover has been declining at about the same rate (~ −13 %/decade) as Arctic summer sea ice. More than one-sixth of the world’s population relies on seasonal snowpack and glaciers for a water supply that is likely to decrease this century. Snow is also a critical component of Earth’s cold regions' ecosystems, in which wildlife, vegetation, and snow are strongly interconnected. Snow water equivalent (SWE) describes the quantity of snow stored on the land surface and is of fundamental importance to water, energy, and geochemical cycles. Quality global SWE estimates are lacking. Given the vast seasonal extent combined with the spatially variable nature of snow distribution at regional and local scales, surface observations will not be able to provide sufficient SWE information. Satellite observations presently cannot provide SWE information at the spatial and temporal resolutions required to address science and high socio-economic value applications such as water resource management and streamflow forecasting. In this paper, we review the potential contribution of X- and Ku-Band Synthetic Aperture Radar (SAR) for global monitoring of SWE. We describe radar interactions with snow-covered landscapes, characterization of snowpack properties using radar measurements, and refinement of retrieval algorithms via synergy with other microwave remote sensing approaches. SAR can image the surface during both day and night regardless of cloud cover, allowing high-frequency revisit at high spatial resolution as demonstrated by missions such as Sentinel-1. The physical basis for estimating SWE from X- and Ku-band radar measurements at local scales is volume scattering by millimetre-scale snow grains. Inference of global snow properties from SAR requires an interdisciplinary approach based on field observations of snow microstructure, physical snow modelling, electromagnetic theory, and retrieval strategies over a range of scales. New field measurement capabilities have enabled significant advances in understanding snow microstructure such as grain size, densities, and layering. We describe radar interactions with snow-covered landscapes, the characterization of snowpack properties using radar measurements, and the refinement of retrieval algorithms via synergy with other microwave remote sensing approaches. This review serves to inform the broader snow research, monitoring, and applications communities on progress made in recent decades, and sets the stage for a new era in SWE remote-sensing from SAR measurements.

DOI bib
Review Article: Global Monitoring of Snow Water Equivalent using High Frequency Radar Remote Sensing
Leung Tsang, Michael Durand, Chris Derksen, Ana P. Barros, Do‐Hyuk Kang, Hans Lievens, Hans‐Peter Marshall, Jiyue Zhu, Joel T. Johnson, Joshua King, Juha Lemmetyinen, Melody Sandells, Nick Rutter, Paul Siqueira, A. W. Nolin, Batu Osmanoglu, Carrie Vuyovich, Edward Kim, Drew Taylor, Ioanna Merkouriadi, Ludovic Brucker, Mahdi Navari, Marie Dumont, Richard Kelly, Rhae Sung Kim, Tien-Hao Liao, Xiaolan Xu, Leung Tsang, Michael Durand, Chris Derksen, Ana P. Barros, Do‐Hyuk Kang, Hans Lievens, Hans‐Peter Marshall, Jiyue Zhu, Joel T. Johnson, Joshua King, Juha Lemmetyinen, Melody Sandells, Nick Rutter, Paul Siqueira, A. W. Nolin, Batu Osmanoglu, Carrie Vuyovich, Edward Kim, Drew Taylor, Ioanna Merkouriadi, Ludovic Brucker, Mahdi Navari, Marie Dumont, Richard Kelly, Rhae Sung Kim, Tien-Hao Liao, Xiaolan Xu

Abstract. Seasonal snow cover is the largest single component of the cryosphere in areal extent, covering an average of 46 million square km of Earth's surface (31 % of the land area) each year, and is thus an important expression of and driver of the Earth’s climate. In recent years, Northern Hemisphere spring snow cover has been declining at about the same rate (~ −13 %/decade) as Arctic summer sea ice. More than one-sixth of the world’s population relies on seasonal snowpack and glaciers for a water supply that is likely to decrease this century. Snow is also a critical component of Earth’s cold regions' ecosystems, in which wildlife, vegetation, and snow are strongly interconnected. Snow water equivalent (SWE) describes the quantity of snow stored on the land surface and is of fundamental importance to water, energy, and geochemical cycles. Quality global SWE estimates are lacking. Given the vast seasonal extent combined with the spatially variable nature of snow distribution at regional and local scales, surface observations will not be able to provide sufficient SWE information. Satellite observations presently cannot provide SWE information at the spatial and temporal resolutions required to address science and high socio-economic value applications such as water resource management and streamflow forecasting. In this paper, we review the potential contribution of X- and Ku-Band Synthetic Aperture Radar (SAR) for global monitoring of SWE. We describe radar interactions with snow-covered landscapes, characterization of snowpack properties using radar measurements, and refinement of retrieval algorithms via synergy with other microwave remote sensing approaches. SAR can image the surface during both day and night regardless of cloud cover, allowing high-frequency revisit at high spatial resolution as demonstrated by missions such as Sentinel-1. The physical basis for estimating SWE from X- and Ku-band radar measurements at local scales is volume scattering by millimetre-scale snow grains. Inference of global snow properties from SAR requires an interdisciplinary approach based on field observations of snow microstructure, physical snow modelling, electromagnetic theory, and retrieval strategies over a range of scales. New field measurement capabilities have enabled significant advances in understanding snow microstructure such as grain size, densities, and layering. We describe radar interactions with snow-covered landscapes, the characterization of snowpack properties using radar measurements, and the refinement of retrieval algorithms via synergy with other microwave remote sensing approaches. This review serves to inform the broader snow research, monitoring, and applications communities on progress made in recent decades, and sets the stage for a new era in SWE remote-sensing from SAR measurements.

2018

DOI bib
Capturing agricultural soil freeze/thaw state through remote sensing and ground observations: A soil freeze/thaw validation campaign
Tracy Rowlandson, Aaron Berg, Alexander Roy, Edward Kim, Renato Pardo Lara, Jarrett Powers, Kristin Lewis, Paul R. Houser, Kyle McDonald, Peter Toose, Albert Wu, Eugenia De Marco, Chris Derksen, Jared Entin, Andreas Colliander, Xiaolan Xu, Alex Mavrovic
Remote Sensing of Environment, Volume 211

Abstract A field campaign was conducted October 30th to November 13th, 2015 with the intention of capturing diurnal soil freeze/thaw state at multiple scales using ground measurements and remote sensing measurements. On four of the five sampling days, we observed a significant difference between morning (frozen scenario) and afternoon (thawed scenario) ground-based measurements of the soil relative permittivity. These results were supported by an in situ soil moisture and temperature network (installed at the scale of a spaceborne passive microwave pixel) which indicated surface soil temperatures fell below 0 °C for the same four sampling dates. Ground-based radiometers appeared to be highly sensitive to F/T conditions of the very surface of the soil and indicated normalized polarization index (NPR) values that were below the defined freezing values during the morning sampling period on all sampling dates. The Scanning L-band Active Passive (SLAP) instrumentation, flown over the study region, showed very good agreement with the ground-based radiometers, with freezing states observed on all four days that the airborne observations covered the fields with ground-based radiometers. The Soil Moisture Active Passive (SMAP) satellite had morning overpasses on three of the sampling days, and indicated frozen conditions on two of those days. It was found that >60% of the in situ network had to indicate surface temperatures below 0 °C before SMAP indicated freezing conditions. This was also true of the SLAP radiometer measurements. The SMAP, SLAP and ground-based radiometer measurements all indicated freezing conditions when soil temperature sensors installed at 5 cm depth were not frozen.

2017

DOI bib
Validation of the SMAP freeze/thaw product using categorical triple collocation
Xinlu Li, Kaighin A. McColl, Haobo Lyu, Xiaolan Xu, Chris Derksen, Hui Lü, Dara Entekhabi
2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)

Landscape freeze/thaw (FT) state is a key variable in Earth's carbon cycle. NASA's Soil Moisture Active Passive (SMAP) satellite mission, launched in January 2015, provides global retrievals of FT state every two to three days. Validating SMAP FT observations with in-situ observations is difficult due to the substantial scale mismatch between a point estimate and a satellite footprint, inducing “representativeness errors” in the in-situ observations. Triple collocation (TC) is a validation technique that addresses this problem by combining estimates from in-situ, model and spaceborne estimates to obtain error estimates for all three products, without assuming that any product is error-free. Unfortunately, it fails when applied to binary or categorical variables, such as landscape FT state. In this study, we use a new variant of TC — categorical triple collocation (CTC) — that can be applied to binary variables, to validate the SMAP FT product across northern land regions (>45N).