2023
DOI
bib
abs
Realizing the value in “non-standard” parts of the qPCR standard curve by integrating fundamentals of quantitative microbiology
Philip J. Schmidt,
Nicole Acosta,
Alex H. S. Chik,
Patrick M. D’Aoust,
Robert Delatolla,
Hadi A. Dhiyebi,
Melissa B. Glier,
Casey R. J. Hubert,
Jennifer Kopetzky,
Chand Mangat,
Xiaoli Pang,
Shelley Peterson,
Natalie Prystajecky,
Yuanyuan Qiu,
Mark R. Servos,
Monica B. Emelko
Frontiers in Microbiology, Volume 14
The real-time polymerase chain reaction (PCR), commonly known as quantitative PCR (qPCR), is increasingly common in environmental microbiology applications. During the COVID-19 pandemic, qPCR combined with reverse transcription (RT-qPCR) has been used to detect and quantify SARS-CoV-2 in clinical diagnoses and wastewater monitoring of local trends. Estimation of concentrations using qPCR often features a log-linear standard curve model calibrating quantification cycle (Cq) values obtained from underlying fluorescence measurements to standard concentrations. This process works well at high concentrations within a linear dynamic range but has diminishing reliability at low concentrations because it cannot explain "non-standard" data such as Cq values reflecting increasing variability at low concentrations or non-detects that do not yield Cq values at all. Here, fundamental probabilistic modeling concepts from classical quantitative microbiology were integrated into standard curve modeling approaches by reflecting well-understood mechanisms for random error in microbial data. This work showed that data diverging from the log-linear regression model at low concentrations as well as non-detects can be seamlessly integrated into enhanced standard curve analysis. The newly developed model provides improved representation of standard curve data at low concentrations while converging asymptotically upon conventional log-linear regression at high concentrations and adding no fitting parameters. Such modeling facilitates exploration of the effects of various random error mechanisms in experiments generating standard curve data, enables quantification of uncertainty in standard curve parameters, and is an important step toward quantifying uncertainty in qPCR-based concentration estimates. Improving understanding of the random error in qPCR data and standard curve modeling is especially important when low concentrations are of particular interest and inappropriate analysis can unduly affect interpretation, conclusions regarding lab performance, reported concentration estimates, and associated decision-making.
2022
DOI
bib
abs
Emergence and Spread of the SARS-CoV-2 Omicron Variant in Alberta Communities Revealed by Wastewater Monitoring
Casey R. J. Hubert,
Nicole Acosta,
Barbara Waddell,
Maria E. Hasing,
Yuanyuan Qiu,
Meghan Fuzzen,
Nathanael B.J. Harper,
María Bautista,
Tiejun Gao,
Chloe Papparis,
Jenn Van Doorn,
Kristine Du,
Kevin Xiang,
Leslie Chan,
Laura Vivas,
Puja Pradhan,
Janine McCalder,
Kashtin Low,
Whitney England,
John Conly,
M. Cathryn Ryan,
Gopal Achari,
Jia Hu,
Jason Cabaj,
Chris Sikora,
Larry Svenson,
Nathan Zelyas,
Mark R. Servos,
Jon Meddings,
Steve E. Hrudey,
Kevin J. Frankowski,
Michael D. Parkins,
Xiaoli Pang,
Bonita E. Lee
Abstract Wastewater monitoring of SARS-CoV-2 allows for early detection and monitoring of COVID-19 burden in communities and can track specific variants of concern. Targeted assays enabled relative proportions of SARS-CoV-2 Omicron and Delta variants to be determined across 30 municipalities covering >75% of the province of Alberta (pop. 4.5M) in Canada, from November 2021 to January 2022. Larger cities like Calgary and Edmonton exhibited a more rapid emergence of Omicron relative to smaller and more remote municipalities. Notable exceptions were Banff, a small international resort town, and Fort McMurray, a more remote northern city with a large fly-in worker population. The integrated wastewater signal revealed that the Omicron variant represented close to 100% of SARS-CoV-2 burden prior to the observed increase in newly diagnosed clinical cases throughout Alberta, which peaked two weeks later. These findings demonstrate that wastewater monitoring offers early and reliable population-level results for establishing the extent and spread of emerging pathogens including SARS-CoV-2 variants.
DOI
bib
abs
Tracking Emergence and Spread of SARS-CoV-2 Omicron Variant in Large and Small Communities by Wastewater Monitoring in Alberta, Canada
Casey R. J. Hubert,
Nicole Acosta,
Barbara Waddell,
Maria E. Hasing,
Yuanyuan Qiu,
Meghan Fuzzen,
Nathanael B.J. Harper,
María Bautista,
Tiejun Gao,
Chloe Papparis,
Jenn Van Doorn,
Kristine Du,
Kevin Xiang,
Leslie Chan,
Laura Vivas,
Puja Pradhan,
Janine McCalder,
Kashtin Low,
Whitney England,
Darina Kuzma,
John Conly,
M. Cathryn Ryan,
Gopal Achari,
Jia Hu,
Jason Cabaj,
Chris Sikora,
Larry Svenson,
Nathan Zelyas,
Mark R. Servos,
Jon Meddings,
Steve E. Hrudey,
Kevin J. Frankowski,
Michael D. Parkins,
Xiaoli Pang,
Bonita E. Lee
Emerging Infectious Diseases, Volume 28, Issue 9
Abstract Wastewater monitoring of SARS-CoV-2 enables early detection and monitoring of the COVID-19 disease burden in communities and can track specific variants of concern. We determined proportions of the Omicron and Delta variants across 30 municipalities covering >75% of the province of Alberta (population 4.5 million), Canada, during November 2021–January 2022. Larger cities Calgary and Edmonton exhibited more rapid emergence of Omicron than did smaller and more remote municipalities. Notable exceptions were Banff, a small international resort town, and Fort McMurray, a medium-sized northern community that has many workers who fly in and out regularly. The integrated wastewater signal revealed that the Omicron variant represented close to 100% of SARS-CoV-2 burden by late December, before the peak in newly diagnosed clinical cases throughout Alberta in mid-January. These findings demonstrate that wastewater monitoring offers early and reliable population-level results for establishing the extent and spread of SARS-CoV-2 variants.
DOI
bib
abs
Wastewater to clinical case (WC) ratio of COVID-19 identifies insufficient clinical testing, onset of new variants of concern and population immunity in urban communities
Patrick M. D’Aoust,
Xin Tian,
Syeda Tasneem Towhid,
Amy Xiao,
Élisabeth Mercier,
Nada Hegazy,
Jianjun Jia,
Shungang Wan,
Md Pervez Kabir,
Wanting Fang,
Meghan Fuzzen,
Maria E. Hasing,
Minqing Ivy Yang,
Jianxian Sun,
Julio Plaza‐Díaz,
Zhihao Zhang,
Aaron Cowan,
Walaa Eid,
Sean E. Stephenson,
Mark R. Servos,
Matthew J. Wade,
Alex MacKenzie,
Hui Peng,
Elizabeth A. Edwards,
Xiaoli Pang,
Eric J. Alm,
Tyson E. Graber,
Robert Delatolla
Science of The Total Environment, Volume 853
Clinical testing has been the cornerstone of public health monitoring and infection control efforts in communities throughout the COVID-19 pandemic. With the anticipated reduction of clinical testing as the disease moves into an endemic state, SARS-CoV-2 wastewater surveillance (WWS) will have greater value as an important diagnostic tool. An in-depth analysis and understanding of the metrics derived from WWS is required to interpret and utilize WWS-acquired data effectively (McClary-Gutierrez et al., 2021; O'Keeffe, 2021). In this study, the SARS-CoV-2 wastewater signal to clinical cases (WC) ratio was investigated across seven cities in Canada over periods ranging from 8 to 21 months. This work demonstrates that significant increases in the WC ratio occurred when clinical testing eligibility was modified to appointment-only testing, identifying a period of insufficient clinical testing (resulting in a reduction to testing access and a reduction in the number of daily tests) in these communities, despite increases in the wastewater signal. Furthermore, the WC ratio decreased significantly in 6 of the 7 studied locations, serving as a potential signal of the emergence of the Alpha variant of concern (VOC) in a relatively non-immunized community (40-60 % allelic proportion), while a more muted decrease in the WC ratio signaled the emergence of the Delta VOC in a relatively well-immunized community (40-60 % allelic proportion). Finally, a significant decrease in the WC ratio signaled the emergence of the Omicron VOC, likely because of the variant's greater effectiveness at evading immunity, leading to a significant number of new reported clinical cases, even when community immunity was high. The WC ratio, used as an additional monitoring metric, could complement clinical case counts and wastewater signals as individual metrics in its potential ability to identify important epidemiological occurrences, adding value to WWS as a diagnostic technology during the COVID-19 pandemic and likely for future pandemics.
2021
DOI
bib
abs
Comparison of approaches to quantify SARS-CoV-2 in wastewater using RT-qPCR: Results and implications from a collaborative inter-laboratory study in Canada
Alex H. S. Chik,
Melissa B. Glier,
Mark R. Servos,
Chand Mangat,
Xiaoli Pang,
Yuanyuan Qiu,
Patrick M. D’Aoust,
Jean-Baptiste Burnet,
Robert Delatolla,
Sarah Dorner,
Qiudi Geng,
John P. Giesy,
R. Michael L. McKay,
Michael R. Mulvey,
Natalie Prystajecky,
Nivetha Srikanthan,
Yuwei Xie,
Bernadette Conant,
Steve E. Hrudey
Journal of Environmental Sciences, Volume 107
Detection of SARS-CoV-2 RNA in wastewater is a promising tool for informing public health decisions during the COVID-19 pandemic. However, approaches for its analysis by use of reverse transcription quantitative polymerase chain reaction (RT-qPCR) are still far from standardized globally. To characterize inter- and intra-laboratory variability among results when using various methods deployed across Canada, aliquots from a real wastewater sample were spiked with surrogates of SARS-CoV-2 (gamma-radiation inactivated SARS-CoV-2 and human coronavirus strain 229E [HCoV-229E]) at low and high levels then provided "blind" to eight laboratories. Concentration estimates reported by individual laboratories were consistently within a 1.0-log10 range for aliquots of the same spiked condition. All laboratories distinguished between low- and high-spikes for both surrogates. As expected, greater variability was observed in the results amongst laboratories than within individual laboratories, but SARS-CoV-2 RNA concentration estimates for each spiked condition remained mostly within 1.0-log10 ranges. The no-spike wastewater aliquots provided yielded non-detects or trace levels (<20 gene copies/mL) of SARS-CoV-2 RNA. Detections appear linked to methods that included or focused on the solids fraction of the wastewater matrix and might represent in-situ SARS-CoV-2 to the wastewater sample. HCoV-229E RNA was not detected in the no-spike aliquots. Overall, all methods yielded comparable results at the conditions tested. Partitioning behavior of SARS-CoV-2 and spiked surrogates in wastewater should be considered to evaluate method effectiveness. A consistent method and laboratory to explore wastewater SARS-CoV-2 temporal trends for a given system, with appropriate quality control protocols and documented in adequate detail should succeed.