Yi Wang
2023
Effects of microforms on the evaporation of peat‐bryophyte‐litter column in a montane peatland in Canadian Rocky Mountain
Yi Wang,
Richard M. Petrone,
Yi Wang,
Richard M. Petrone
Ecohydrology, Volume 16, Issue 3
Peatland microtopography contains hummocks (local high points) and hollows (local low points). Little is known about how the evaporation of peat (P), peat-bryophyte (BP), peat-litter (LP) and peat-bryophyte-litter (LBP) columns varies with peatland microforms. That is, whether there are fine-scale variations in peatland evaporation, and if they are critical when being upscaled to the entire peatland ecosystem is yet to be answered. This study found that evaporation was significantly affected by cover type (P, BP, LP or LBP) and the interaction effect of the cover type and microform, based on the field evaporation experiments in a montane peatland in the Canadian Rocky Mountains, during the growing season of 2021. Mean daily evaporation of P-Hummock and P-Hollow is 14.16 and 11.76 g day−1, respectively; BP-Hummock and BP-Hollow is 9.57 and 14.38 g day−1, respectively; LBP-Hummock and LBP-Hollow is 9.44 and 9.91 g day−1, respectively; and evaporation of LP-Hummock and LP-Hollow is 5.68 and 7.64 g day−1, respectively. Peatland microform indirectly affected evaporation through interactions with cover type, modifying the vertical profile of soil temperature and changing key environmental drivers of evaporation. Moreover, the ability of two widely used models in modelling the spatial variation of peatland evaporation was also tested. It was found that Penman–Monteith (P–M) model and the bryophyte layer model in the Atmosphere-Plant Exchange Simulator (APES) were able to yield satisfactory results based on field measurements of soil temperature and soil moisture. This study supports developing more practical evaluation tools on the hydrological state of peatland ecosystems.
Effects of microforms on the evaporation of peat‐bryophyte‐litter column in a montane peatland in Canadian Rocky Mountain
Yi Wang,
Richard M. Petrone,
Yi Wang,
Richard M. Petrone
Ecohydrology, Volume 16, Issue 3
Peatland microtopography contains hummocks (local high points) and hollows (local low points). Little is known about how the evaporation of peat (P), peat-bryophyte (BP), peat-litter (LP) and peat-bryophyte-litter (LBP) columns varies with peatland microforms. That is, whether there are fine-scale variations in peatland evaporation, and if they are critical when being upscaled to the entire peatland ecosystem is yet to be answered. This study found that evaporation was significantly affected by cover type (P, BP, LP or LBP) and the interaction effect of the cover type and microform, based on the field evaporation experiments in a montane peatland in the Canadian Rocky Mountains, during the growing season of 2021. Mean daily evaporation of P-Hummock and P-Hollow is 14.16 and 11.76 g day−1, respectively; BP-Hummock and BP-Hollow is 9.57 and 14.38 g day−1, respectively; LBP-Hummock and LBP-Hollow is 9.44 and 9.91 g day−1, respectively; and evaporation of LP-Hummock and LP-Hollow is 5.68 and 7.64 g day−1, respectively. Peatland microform indirectly affected evaporation through interactions with cover type, modifying the vertical profile of soil temperature and changing key environmental drivers of evaporation. Moreover, the ability of two widely used models in modelling the spatial variation of peatland evaporation was also tested. It was found that Penman–Monteith (P–M) model and the bryophyte layer model in the Atmosphere-Plant Exchange Simulator (APES) were able to yield satisfactory results based on field measurements of soil temperature and soil moisture. This study supports developing more practical evaluation tools on the hydrological state of peatland ecosystems.
The dependence of evaporative efficiency of vegetated surfaces on ground cover mass fractions in vegetated soils in mesic ecosystems
Yi Wang,
Richard M. Petrone,
Brandon Van Huizen
Hydrological Processes, Volume 37, Issue 11
Abstract Bare soil evaporation has been studied extensively, but less is certain regarding how site‐specific features, especially the overstory tree canopy and ground covers, mediate evaporation processes. Inspired by recent advances on modelling bare soil evaporative efficiency (SEE), this study explored SEE over a range of soil substrates and ground cover types, with and without the presence of an overstory canopy in three mesic ecosystems in Canadian Rocky Mountains. A significant relationship was found between the critical soil water content and ground cover mass fractions across various ground cover types, both with and without the presence of an overstory canopy. This relationship is expected to be prevalent across various ecosystems. Moreover, a simple approach for modelling SEE of vegetated surfaces and a correction method to account for below‐canopy SEE is also proposed. The model yields satisfactory simulations, and the approach is expected to be widely applicable, given the strength that its parameters are easily acquired, and its formulations are simple and straightforward. While the model may be particularly suited to mesic ecosystems, the underlying mechanism of SEE suggests that this model can also be applied in dryer conditions. This approach will greatly improve ET parameterization in land‐surface models (LSMs) and increase our knowledge of the global water cycle and ecosystem responses under climate change impacts.