2021
DOI
bib
abs
On the Optimal Design of Field Significance Tests for Changes in Climate Extremes
Jianyu Wang,
Chao Li,
Francis W. Zwiers,
Xuebin Zhang,
Guilong Li,
Zhihong Jiang,
Panmao Zhai,
Ying Sun,
Zhen Li,
Qun Yue,
Jianyu Wang,
Chao Li,
Francis W. Zwiers,
Xuebin Zhang,
Guilong Li,
Zhihong Jiang,
Panmao Zhai,
Ying Sun,
Zhen Li,
Qun Yue
Geophysical Research Letters, Volume 48, Issue 9
Field significance tests have been widely used to detect climate change. In most cases, a local test is used to identify significant changes at individual locations, which is then followed by a field significance test that considers the number of locations in a region with locally significant changes. The choice of local test can affect the result, potentially leading to conflicting assessments of the impact of climate change on a region. We demonstrate that when considering changes in the annual extremes of daily precipitation, the simple Mann‐Kendall trend test is preferred as the local test over more complex likelihood ratio tests that compare the fits of stationary and nonstationary generalized extreme value distributions. This lesson allows us to report, with enhanced confidence, that the intensification of annual extremes of daily precipitation in China since 1961 became field significant much earlier than previously reported.
DOI
bib
abs
On the Optimal Design of Field Significance Tests for Changes in Climate Extremes
Jianyu Wang,
Chao Li,
Francis W. Zwiers,
Xuebin Zhang,
Guilong Li,
Zhihong Jiang,
Panmao Zhai,
Ying Sun,
Zhen Li,
Qun Yue,
Jianyu Wang,
Chao Li,
Francis W. Zwiers,
Xuebin Zhang,
Guilong Li,
Zhihong Jiang,
Panmao Zhai,
Ying Sun,
Zhen Li,
Qun Yue
Geophysical Research Letters, Volume 48, Issue 9
Field significance tests have been widely used to detect climate change. In most cases, a local test is used to identify significant changes at individual locations, which is then followed by a field significance test that considers the number of locations in a region with locally significant changes. The choice of local test can affect the result, potentially leading to conflicting assessments of the impact of climate change on a region. We demonstrate that when considering changes in the annual extremes of daily precipitation, the simple Mann‐Kendall trend test is preferred as the local test over more complex likelihood ratio tests that compare the fits of stationary and nonstationary generalized extreme value distributions. This lesson allows us to report, with enhanced confidence, that the intensification of annual extremes of daily precipitation in China since 1961 became field significant much earlier than previously reported.
Abstract This study presents an analysis of daily temperature and precipitation extremes with return periods ranging from 2 to 50 years in phase 6 of the Coupled Model Intercomparison Project (CMIP6) multimodel ensemble of simulations. Judged by similarity with reanalyses, the new-generation models simulate the present-day temperature and precipitation extremes reasonably well. In line with previous CMIP simulations, the new simulations continue to project a large-scale picture of more frequent and more intense hot temperature extremes and precipitation extremes and vanishing cold extremes under continued global warming. Changes in temperature extremes outpace changes in global annual mean surface air temperature (GSAT) over most landmasses, while changes in precipitation extremes follow changes in GSAT globally at roughly the Clausius–Clapeyron rate of ~7% °C −1 . Changes in temperature and precipitation extremes normalized with respect to GSAT do not depend strongly on the choice of forcing scenario or model climate sensitivity, and do not vary strongly over time, but with notable regional variations. Over the majority of land regions, the projected intensity increases and relative frequency increases tend to be larger for more extreme hot temperature and precipitation events than for weaker events. To obtain robust estimates of these changes at local scales, large initial-condition ensemble simulations are needed. Appropriate spatial pooling of data from neighboring grid cells within individual simulations can, to some extent, reduce the needed ensemble size.
2019
DOI
bib
abs
Larger Increases in More Extreme Local Precipitation Events as Climate Warms
Chao Li,
Francis W. Zwiers,
Xuebin Zhang,
Gang Chen,
Jian Lu,
Guilong Li,
Jesse Norris,
Yaheng Tan,
Ying Sun,
Min Liu
Geophysical Research Letters, Volume 46, Issue 12
Climate models project that extreme precipitation events will intensify in proportion to their intensity during the 21st century at large spatial scales. The identification of the causes of this phenomenon nevertheless remains tenuous. Using a large ensemble of North American regional climate simulations, we show that the more rapid intensification of more extreme events also appears as a robust feature at finer regional scales. The larger increases in more extreme events than in less extreme events are found to be primarily due to atmospheric circulation changes. Thermodynamically induced changes have relatively uniform effects across extreme events and regions. In contrast, circulation changes weaken moderate events over western interior regions of North America and enhance them elsewhere. The weakening effect decreases and even reverses for more extreme events, whereas there is further intensification over other parts of North America, creating an “intense gets intenser” pattern over most of the continent.