Zahra Akbarzadeh


2022

DOI bib
Agricultural phosphorus surplus trajectories for Ontario, Canada (1961–2016), and erosional export risk
Tamara L. Van Staden, K. J. Van Meter, N. B. Basu, Chris T. Parsons, Zahra Akbarzadeh, Philippe Van Cappellen
Science of The Total Environment, Volume 818

Management strategies aimed at reducing nutrient enrichment of surface waters may be hampered by nutrient legacies that have accumulated in the landscape. Here, we apply the Net Anthropogenic Phosphorus Input (NAPI) model to reconstruct the historical phosphorus (P) input trajectories for the province of Ontario, which encompasses the Canadian portion of the drainage basin of the Laurentian Great Lakes (LGL). NAPI considers P inputs from detergent, human and livestock waste, fertilizer inputs, and P outputs by crop uptake. During the entire time period considered, from 1961 to 2016, Ontario experienced positive annual NAPI values. Despite a generally downward NAPI trend since the late 1970s, the lower LGL, especially Lake Erie, continue to be plagued by algal blooms. When comparing NAPI results and river monitoring data for the period 2003 to 2013, P discharged by Canadian rivers into Lake Erie only accounts for 12.5% of the NAPI supplied to the watersheds' agricultural areas. Thus, over 85% of the agricultural NAPI is retained in the watersheds where it contributes to a growing P legacy, primarily as soil P. The slow release of legacy P therefore represents a long-term risk to the recovery of the lake. To help mitigate this risk, we present a methodology to spatially map out the source areas with the greatest potential of erosional export of legacy soil P to surface waters. These areas should be prioritized in soil conservation efforts.

DOI bib
Salinization as a driver of eutrophication symptoms in an urban lake (Lake Wilcox, Ontario, Canada)
Jovana Radosavljevic, Stephanie Slowinski, Mahyar Shafii, Zahra Akbarzadeh, Fereidoun Rezanezhad, Chris T. Parsons, William Withers, Philippe Van Cappellen
Science of The Total Environment, Volume 846

Lake Wilcox (LW), a shallow kettle lake located in southern Ontario, has experienced multiple phases of land use change associated with human settlement and residential development in its watershed since the early 1900s. Urban growth has coincided with water quality deterioration, including the occurrence of algal blooms and depletion of dissolved oxygen (DO) in the water column. We analyzed 22 years of water chemistry, land use, and climate data (1996-2018) using principal component analysis (PCA) and multiple linear regression (MLR) to identify the contributions of climate, urbanization, and nutrient loading to the changes in water chemistry. Variations in water column stratification, phosphorus (P) speciation, and chl-a (as a proxy for algal abundance) explain 76 % of the observed temporal trends of the four main PCA components derived from water chemistry data. MLR results further imply that the intensity of stratification, quantified by the Brunt-Väisälä frequency, is a major predictor of the changes in water quality. Other important factors explaining the variations in nitrogen (N) and P speciation, and the DO concentrations, are watershed imperviousness and lake chloride concentrations that, in turn, are closely correlated. We conclude that the observed in-lake water quality trends over the past two decades are linked to urbanization via increased salinization associated with expanding impervious land cover, rather than increasing external P loading. The rising salinity promotes water column stratification, which reduces the oxygenation of the hypolimnion and enhances internal P loading to the water column. Thus, stricter controls on the application and runoff of de-icing salt should be considered as part of managing eutrophication symptoms in lakes of cold climate regions.

2020

DOI bib
Global Dam‐Driven Changes to Riverine N:P:Si Ratios Delivered to the Coastal Ocean
Taylor Maavara, Zahra Akbarzadeh, Philippe Van Cappellen
Geophysical Research Letters, Volume 47, Issue 15

River damming alters nutrient fluxes along the land‐ocean aquatic continuum as a result of biogeochemical processes in reservoirs. Both the changes in riverine nutrient fluxes and nutrient ratios impact ecosystem functioning of receiving water bodies. We utilize spatially distributed mechanistic models of nitrogen (N), phosphorus (P), and silicon (Si) cycling in reservoirs to quantify changes in nutrient stoichiometry of river discharge to coastal waters. The results demonstrate that the growing number of dams decouples the riverine fluxes of N, P, and Si. Worldwide, preferential removal of P over N in reservoirs increases N:P ratios delivered to the ocean, raising the potential for P limitation of coastal productivity. By midcentury, more than half of the rivers discharging to the coastal zone will experience a higher removal of reactive Si relative to reactive P and total N, in response to the rapid pace at which new hydroelectric dams are being built.

2019

DOI bib
Effects of Damming on River Nitrogen Fluxes: A Global Analysis
Zahra Akbarzadeh, Taylor Maavara, Stephanie Slowinski, Philippe Van Cappellen
Global Biogeochemical Cycles, Volume 33, Issue 11

This code, developed in MATLAB R2018a, is a process based mass balance modelfor simulating the biogeochemical cycling of nitrogen in dam reservoirs.