2023
DOI
bib
abs
Adhering Solid Precipitation in the Current and Pseudo-Global Warming Future Climate over the Canadian Provinces of Manitoba and Saskatchewan
Ronald E. Stewart,
Zhuo Liu,
Dylan Painchaud-Niemi,
John Hanesiak,
Julie M. Thériault,
Ronald E. Stewart,
Zhuo Liu,
Dylan Painchaud-Niemi,
John Hanesiak,
Julie M. Thériault
Atmosphere, Volume 14, Issue 2
Solid precipitation falling near 0 °C, mainly snow, can adhere to surface features and produce major impacts. This study is concerned with characterizing this precipitation over the Canadian Prairie provinces of Manitoba and Saskatchewan in the current (2000–2013) and pseudo-global warming future climate, with an average 5.9 °C temperature increase, through the use of high resolution (4 km) model simulations. On average, simulations in the current climate suggest that this precipitation occurs within 11 events per year, lasting 33.6 h in total and producing 27.5 mm melted equivalent, but there are wide spatial variations that are partly due to enhancements arising from its relatively low terrain. Within the warmer climate, average values generally increase, and spatial patterns shift somewhat. This precipitation consists of four categories covering its occurrence just below and just above a wet-bulb temperature of 0 °C, and with or without liquid precipitation. It generally peaks in March or April, as well as in October, and these peaks move towards mid-winter by approximately one month within the warmer climate. Storms producing this precipitation generally produce winds with a northerly component during or shortly after the precipitation; these winds contribute to further damage. Overall, this study has determined the features of and expected changes to adhering precipitation across this region.
DOI
bib
abs
Adhering Solid Precipitation in the Current and Pseudo-Global Warming Future Climate over the Canadian Provinces of Manitoba and Saskatchewan
Ronald E. Stewart,
Zhuo Liu,
Dylan Painchaud-Niemi,
John Hanesiak,
Julie M. Thériault,
Ronald E. Stewart,
Zhuo Liu,
Dylan Painchaud-Niemi,
John Hanesiak,
Julie M. Thériault
Atmosphere, Volume 14, Issue 2
Solid precipitation falling near 0 °C, mainly snow, can adhere to surface features and produce major impacts. This study is concerned with characterizing this precipitation over the Canadian Prairie provinces of Manitoba and Saskatchewan in the current (2000–2013) and pseudo-global warming future climate, with an average 5.9 °C temperature increase, through the use of high resolution (4 km) model simulations. On average, simulations in the current climate suggest that this precipitation occurs within 11 events per year, lasting 33.6 h in total and producing 27.5 mm melted equivalent, but there are wide spatial variations that are partly due to enhancements arising from its relatively low terrain. Within the warmer climate, average values generally increase, and spatial patterns shift somewhat. This precipitation consists of four categories covering its occurrence just below and just above a wet-bulb temperature of 0 °C, and with or without liquid precipitation. It generally peaks in March or April, as well as in October, and these peaks move towards mid-winter by approximately one month within the warmer climate. Storms producing this precipitation generally produce winds with a northerly component during or shortly after the precipitation; these winds contribute to further damage. Overall, this study has determined the features of and expected changes to adhering precipitation across this region.
2020
Abstract. The 0 ∘C temperature threshold is critical for many meteorological and hydrological processes driven by melting and freezing in the atmosphere, surface, and sub-surface and by the associated precipitation varying between rain, freezing rain, wet snow, and snow. This threshold is especially important in cold regions such as Canada, because it is linked with freeze–thaw, snowmelt, and permafrost. This study develops a Canada-wide perspective on near-0 ∘C conditions using hourly surface temperature and precipitation type observations from 92 climate stations for the period from 1981 to 2011. In addition, nine stations from various climatic regions are selected for further analysis. Near-0 ∘C conditions are defined as periods when the surface temperature is between −2 and 2 ∘C. Near-0 ∘C conditions occur often across all regions of the country, although the annual number of days and hours and the duration of these events varies dramatically. Various types of precipitation (e.g., rain, freezing rain, wet snow, and ice pellets) sometimes occur with these temperatures. Near-0 ∘C conditions and the reported precipitation type occurrences tend to be higher in Atlantic Canada, although high values also occur in other regions. Trends of most temperature-based and precipitation-based indicators show little or no change despite a systematic warming in annual surface temperatures over Canada. Over the annual cycle, near-0 ∘C temperatures and precipitation often exhibit a pattern: short durations occur around summer, driven by the diurnal cycle, and a tendency toward longer durations around winter, associated with storms. There is also a tendency for near-0 ∘C surface temperatures to occur more often than expected relative to other temperature windows at some stations due, at least in part, to diabatic cooling and heating that take place with melting and freezing, respectively, in the atmosphere and at the surface.
Large-area, long-duration droughts are among Canada’s costliest natural disasters. A particularly vulnerable region includes the Canadian Prairies where droughts have, and are projected to continue to have, major impacts. However, individual droughts often differ in their stages such as onset, growth, persistence, retreat, and duration. Using the Standardized Precipitation Evapotranspiration Index, this study assesses historical and projected future changes to the stages and other characteristics of severe drought occurrence across the agricultural region of the Canadian Prairies. Ten severe droughts occurred during the 1900–2014 period with each having unique temporal and spatial characteristics. Projected changes from 29 global climate models (GCMs) with three representative concentration pathways reveal an increase in severe drought occurrence, particularly toward the end of this century with a high emissions scenario. For the most part, the overall duration and intensity of future severe drought conditions is projected to increase mainly due to longer persistence stages, while growth and retreat stages are generally shorter. Considerable variability exists among individual GCM projections, including their ability to simulate observed severe drought characteristics. This study has increased understanding in potential future changes to a little studied aspect of droughts, namely, their stages and associated characteristics. This knowledge can aid in developing future adaptation strategies.
2019
DOI
bib
abs
A Review and Synthesis of Future Earth System Change in theInterior of Western Canada: Part I – Climate and Meteorology
Ronald E. Stewart,
Kit K. Szeto,
Barrie Bonsal,
John Hanesiak,
Bohdan Kochtubajda,
Yanping Li,
Julie M. Thériault,
C. M. DeBeer,
Benita Y. Tam,
Zhenhua Li,
Zhuo Liu,
Jennifer Bruneau,
Sébastien Marinier,
Dominic Matte
Abstract. The Interior of Western Canada, up to and including the Arctic, has experienced rapid change in its climate, hydrology, cryosphere and ecosystems and this is expected to continue. Although there is general consensus that warming will occur in the future, many critical issues remain. In this first of two articles, attention is placed on atmospheric-related issues that range from large scales down to individual precipitation events. Each of these is considered in terms of expected change organized by season and utilizing climate scenario information as well as thermodynamically-driven future climatic forcing simulations. Large scale atmospheric circulations affecting this region are generally projected to become stronger in each season and, coupled with warming temperatures, lead to enhancements of numerous water-related and temperature-related extremes. These include winter snowstorms, freezing rain, drought as well as atmospheric forcing of spring floods although not necessarily summer convection. Collective insights of these atmospheric findings are summarized in a consistent, connected physical framework.
Abstract. The 0 °C temperature threshold is critical to many meteorological and hydrological processes driven by melting and freezing in the atmosphere, surface and sub-surface and by the associated precipitation varying between rain, freezing rain, wet snow and snow. This threshold, linked with freeze-thaw, is especially important in cold regions such as Canada. This study develops a Canada-wide perspective on near 0 °C conditions with a particular focus on the occurrence of its associated precipitation. Since this analysis requires hourly values of surface temperature and precipitation type observations, it was limited to 92 stations over the 1981–2011 period. In addition, nine stations representative of various climatic regions are selected for further analysis. Near 0 °C conditions are defined as periods when the surface temperature is between −2 °C and 2 °C. Near 0 °C conditions occur often across all regions of the country although the annual number of days and hours and the duration of these events varies dramatically. Various forms of precipitation (including rain, freezing rain, wet snow and ice pellets) are sometimes linked with these temperatures with highest fractions tending to occur in Atlantic Canada. Trends of most temperature-based and precipitation-based indicators show little or no change despite a systematic warming in annual temperatures. Over the annual cycle, near 0 °C temperatures and precipitation often exhibit a pattern with short durations near summer driven by the diurnal cycle, while longer durations tend to occur more towards winter associated with storms. There is also a tendency for near 0 °C temperatures to occur more often than expected relative to other temperature windows; due at least in part to diabatic cooling and heating occurring with melting and freezing, respectively, in the atmosphere and at the surface.
DOI
bib
abs
Summary and synthesis of Changing Cold Regions Network (CCRN) research in the interior of western Canada – Part 1: Projected climate and meteorology
Ronald E. Stewart,
Kit K. Szeto,
Barrie Bonsal,
John Hanesiak,
Bohdan Kochtubajda,
Yanping Li,
Julie M. Thériault,
C. M. DeBeer,
Benita Y. Tam,
Zhenhua Li,
Zhuo Liu,
Jennifer Bruneau,
Patrick Duplessis,
Sébastien Marinier,
Dominic Matte
Hydrology and Earth System Sciences, Volume 23, Issue 8
Abstract. The interior of western Canada, up to and including the Arctic, has experienced rapid change in its climate, hydrology, cryosphere, and ecosystems, and this is expected to continue. Although there is general consensus that warming will occur in the future, many critical issues remain. In this first of two articles, attention is placed on atmospheric-related issues that range from large scales down to individual precipitation events. Each of these is considered in terms of expected change organized by season and utilizing mainly “business-as-usual” climate scenario information. Large-scale atmospheric circulations affecting this region are projected to shift differently in each season, with conditions that are conducive to the development of hydroclimate extremes in the domain becoming substantially more intense and frequent after the mid-century. When coupled with warming temperatures, changes in the large-scale atmospheric drivers lead to enhancements of numerous water-related and temperature-related extremes. These include winter snowstorms, freezing rain, drought, forest fires, as well as atmospheric forcing of spring floods, although not necessarily summer convection. Collective insights of these atmospheric findings are summarized in a consistent, connected physical framework.