Journal of Environmental Quality, Volume 47, Issue 1
- Anthology ID:
- G18-100
- Month:
- Year:
- 2018
- Address:
- Venue:
- GWF
- SIG:
- Publisher:
- Wiley
- URL:
- https://gwf-uwaterloo.github.io/gwf-publications/G18-100
- DOI:
Supply and Transport Limitations on Phosphorus Losses from Agricultural Fields in the Lower Great Lakes Region, Canada
Janina M. Plach
|
Merrin L. Macrae
|
Geneviève Ali
|
Richard R. Brunke
|
Michael English
|
Gabrielle Ferguson
|
W.V. Lam
|
Tatianna M. Lozier
|
Kevin McKague
|
I. P. O’Halloran
|
Gilian Opolko
|
Christopher J. Van Esbroeck
Phosphorus (P) mobilization in agricultural landscapes is regulated by both hydrologic (transport) and biogeochemical (supply) processes interacting within soils; however, the dominance of these controls can vary spatially and temporally. In this study, we analyzed a 5-yr dataset of stormflow events across nine agricultural fields in the lower Great Lakes region of Ontario, Canada, to determine if edge-of-field surface runoff and tile drainage losses (total and dissolved reactive P) were limited by transport mechanisms or P supply. Field sites ranged from clay loam, silt loam, to sandy loam textures. Findings indicate that biogeochemical processes (P supply) were more important for tile drain P loading patterns (i.e., variable flow-weighted mean concentrations ([]) across a range of flow regimes) relative to surface runoff, which trended toward a more chemostatic or transport-limited response. At two sites with the same soil texture, higher tile [] and greater transport limitations were apparent at the site with higher soil available P (STP); however, STP did not significantly correlate with tile [] or P loading patterns across the nine sites. This may reflect that the fields were all within a narrow STP range and were not elevated in STP concentrations (Olsen-P, ≤25 mg kg). For the study sites where STP was maintained at reasonable concentrations, hydrology was less of a driving factor for tile P loadings, and thus management strategies that limit P supply may be an effective way to reduce P losses from fields (e.g., timing of fertilizer application).