Journal of Environmental Quality, Volume 48, Issue 5


Anthology ID:
G19-106
Month:
Year:
2019
Address:
Venue:
GWF
SIG:
Publisher:
Wiley
URL:
https://gwf-uwaterloo.github.io/gwf-publications/G19-106
DOI:
Bib Export formats:
BibTeX MODS XML EndNote

pdf bib
Evaluating Hydrologic Response in Tile‚ÄźDrained Landscapes: Implications for Phosphorus Transport
Merrin L. Macrae | Genevieve Ali | Kevin W. King | Janina M. Plach | William T. Pluer | Mark R. Williams | Matthew Q. Morison | Wozhan Tang

Phosphorus (P) loss in agricultural discharge has typically been associated with surface runoff; however, tile drains have been identified as a key P pathway due to preferential transport. Identifying when and where these pathways are active may establish high-risk periods and regions that are vulnerable for P loss. A synthesis of high-frequency, runoff data from eight cropped fields across the Great Lakes region of North America over a 3-yr period showed that both surface and tile flow occurred year-round, although tile flow occurred more frequently. The relative timing of surface and tile flow activation was classified into four response types to infer runoff-generation processes. Response types were found to vary with season and soil texture. In most events across all sites, tile responses preceded surface flow, whereas the occurrence of surface flow prior to tile flow was uncommon. The simultaneous activation of pathways, indicating rapid connectivity through the vadose zone, was seldom observed at the loam sites but occurred at clay sites during spring and summer. Surface flow at the loam sites was often generated as saturation-excess, a phenomenon rarely observed on the clay sites. Contrary to expectations, significant differences in P loads in tiles were not apparent under the different response types. This may be due to the frequency of the water quality sampling or may indicate that factors other than surface-tile hydrologic connectivity drive tile P concentrations. This work provides new insight into spatial and temporal differences in runoff mechanisms in tile-drained landscapes.

pdf bib
The Latitudes, Attitudes, and Platitudes of Watershed Phosphorus Management in North America
Douglas R. Smith | Merrin L. Macrae | Peter J. A. Kleinman | Helen P. Jarvie | Kevin W. King | Ray B. Bryant

Phosphorus (P) plays a crucial role in agriculture as a primary fertilizer nutrient-and as a cause of the eutrophication of surface waters. Despite decades of efforts to keep P on agricultural fields and reduce losses to waterways, frequent algal blooms persist, triggering not only ecological disruption but also economic, social, and political consequences. We investigate historical and persistent factors affecting agricultural P mitigation in a transect of major watersheds across North America: Lake Winnipeg, Lake Erie, the Chesapeake Bay, and Lake Okeechobee/Everglades. These water bodies span 26 degrees of latitude, from the cold climate of central Canada to the subtropics of the southeastern United States. These water bodies and their associated watersheds have tracked trajectories of P mitigation that manifest remarkable similarities, and all have faced challenges in the application of science to agricultural management that continue to this day. An evolution of knowledge and experience in watershed P mitigation calls into question uniform solutions as well as efforts to transfer strategies from other arenas. As a result, there is a need to admit to shortcomings of past approaches, plotting a future for watershed P mitigation that accepts the sometimes two-sided nature of Hennig Brandt's "Devil's Element."