FACETS, Volume 5, Issue 1


Anthology ID:
G20-24
Month:
Year:
2020
Address:
Venue:
GWF
SIG:
Publisher:
Canadian Science Publishing
URL:
https://gwf-uwaterloo.github.io/gwf-publications/G20-24
DOI:
Bib Export formats:
BibTeX MODS XML EndNote

pdf bib
Sowing a way towards revitalizing Indigenous agriculture: creating meaning from a forum discussion in Saskatchewan, Canada
Melissa M. Arcand | Lori Bradford | Dale F. Worme | Graham Strickert | Ken Bear | Anthony Blair Dreaver Johnston | Sheldon M. Wuttunee | Alfred Gamble | Debra Shewfelt

Agriculture is practiced on 3–4 million acres of First Nations reserve lands in the Saskatchewan Prairies—predominantly by non-Indigenous farmers. A confluence of factors including an increase in agricultural land holdings on reserve and greater autonomy in land management have renewed conversations on how First Nations can realize the full economic benefits and exert greater control over agricultural activities that affect the reserve land base. We hosted a Forum on Indigenous Agriculture to share current knowledge on the contemporary status of Indigenous agriculture and to co-formulate research, capacity building, and policy priorities. First Nations’ roles in agriculture are diverse and were categorized in three broad contexts: as farmers, relying on traditional Indigenous or western practice, or a synergy of both; as landlords negotiating lease agreements; and as agribusiness entrepreneurs. Five themes emerged from the forum: centring Indigenous knowledge and traditional relationships to the land, capacity building, building respectful partnerships and relationships, financing farming and equitable economies, and translating research to policy and legislation. The forum provided foundational data to inform research and capacity building to meet community-defined goals in agriculture on reserve lands and by First Nations people.

pdf bib
Fluctuating water levels influence access to critical habitats for threatened Cowichan Lake lamprey
Chiranjib Chaudhuri | Joy Wade | Colin Robertson

Cowichan Lake lamprey ( Entosphenus macrostomus) is a threatened species resident to Mesachie Lake, Cowichan Lake, and adjoining Bear Lake and their major tributaries in British Columbia. Decreases in trapping success have created concerns that the population is declining. Some potential threats include water use, climate change, and management actions. Owing to the absence of long-term data on population trends, little information is available to estimate habitat quality and factors that influence it. We sought to fill this gap by examining associations between habitat area and variables representing suspected key drivers of habitat availability. Critical habitat areas were imaged using an unmanned aerial vehicle over a period of three years at three sites at Cowichan Lake and a subsequent habitat area was classified. Meteorological and anthropogenic controls on habitat area were investigated through automatic relevance detection regression models. The major driver of habitat area during the critical spawning period was water level during the storage season, which also depends on the meteorological variables and anthropogenic control. It is recommended that regulation of the weir should aim to ensure that the water level remains above the 1 m mark, which roughly equates to the 67% coverage of water on the habitat area used for spawning.

pdf bib
Extreme rainfall drives early onset cyanobacterial bloom
Megan L. Larsen | Helen M. Baulch | Sherry L. Schiff | Dana F. Simon | Sébastien Sauvé | Jason J. Venkiteswaran

The increasing prevalence of cyanobacteria-dominated harmful algal blooms is strongly associated with nutrient loading and changing climatic patterns. Changes to precipitation frequency and intensity, as predicted by current climate models, are likely to affect bloom development and composition through changes in nutrient fluxes and water column mixing. However, few studies have directly documented the effects of extreme precipitation events on cyanobacterial composition, biomass, and toxin production. We tracked changes in a eutrophic reservoir following an extreme precipitation event, describing an atypically early toxin-producing cyanobacterial bloom and successional progression of the phytoplankton community, toxins, and geochemistry. An increase in bioavailable phosphorus by more than 27-fold in surface waters preceded notable increases in Aphanizomenon flos-aquae throughout the reservoir approximately 2 weeks postevent and ∼5 weeks before blooms typically occur. Anabaenopeptin-A and three microcystin congeners (microcystin-LR, -YR, and -RR) were detected at varying levels across sites during the bloom period, which lasted between 3 and 5 weeks. These findings suggest extreme rainfall can trigger early cyanobacterial bloom initiation, effectively elongating the bloom season period of potential toxicity. However, effects will vary depending on factors including the timing of rainfall and reservoir physical structure.

pdf bib
Transforming conflict over natural resources: a socio-ecological systems analysis of agricultural drainage
Sarah Minnes | Valencia Gaspard | Philip A. Loring | Helen M. Baulch | Sarah-Patricia Breen

Agricultural drainage is a complicated and often conflict-ridden natural resource management issue, impacting contested ecosystem services related to the retention of wetlands as well as the productivity of farmland. This research identifies opportunities to transform the conflict over agricultural drainage in Saskatchewan, Canada, towards collaboration. We report on ethnographic research informed by a conservation conflict-transformation framework to evaluate the nature of the conflict and whether drivers of the conflict operate principally at the level of disputes over discrete ecosystem services or if they reach deeper into local social circumstances and build on larger unresolved conflict(s) among groups in the region. In addition to the conflict-transformation framework, we apply the Social–Ecological Systems Framework to elicit details regarding the substantive, relational, and material dimensions of this conflict. Our research suggests that processes for governing natural resources, such as those in place for governing drainage in Saskatchewan, need to have mechanisms to facilitate relationship building and shared understandings, need to be adaptable to people’s changing needs and concerns, and should focus on inclusivity and empowerment of actors to address conflict.