Vadose Zone Journal, Volume 19, Issue 1


Anthology ID:
G20-45
Month:
Year:
2020
Address:
Venue:
GWF
SIG:
Publisher:
Wiley
URL:
https://gwf-uwaterloo.github.io/gwf-publications/G20-45
DOI:
Bib Export formats:
BibTeX MODS XML EndNote

pdf bib
Heterogeneity of the peat profile and its role in unsaturated sodium chloride rise at field and laboratory scales
Nicole Balliston | Jonathan S. Price

Resource extraction in Canada's boreal ecozone increases the risk of contaminant release into the area's extensive bog and fen peatlands. Lateral spreading, then upwards transport of solutes into the vadose zone of these moss‐dominated ecosystems, could be toxic to vegetation. To evaluate the rate and character of contaminant rise in a subarctic bog, vadose zone‐specific conductance and water content were measured in four hummocks ∼5 m downslope of a 45‐d 300‐mg L−1 NaCl release. Four 30‐cm‐deep hummock peat mesocosms were extracted adjacent to the release site for an unsaturated evaporation‐driven NaCl breakthrough experiment and subsequent parameterization. The field rate of solute accumulation was slower in near‐surface (0–5 cm) peat, where low water contents limited pore connectivity. Solute accumulation was reduced by downward flushing by rain, though this was lesser in near surface moss where solute remained held in small disconnected pores. In the laboratory, Cl− rise reached the 15‐cm depth in all mesocosms by Day 65. Sodium rise was 2.2 times slower, likely due to adsorption to the peat matrix. Rates of upwards solute movement were highly variable; the highest rates occurred in the mesocosm with small but hydrologically conductive pores near the surface, and the lowest occurred where vascular roots disrupted the physical structure of the peat. This research demonstrates that solute spilled into a bog peatland is likely to rise and be retained in the vadose zone. However, hydraulic and solute transport behaviors are sensitive to the vertical structure of peat, underscoring the need for extensive sampling and parameter characterization.

pdf bib
Contribution of preferential flow to tile drainage varies spatially and temporally
William T. Pluer | Merrin L. Macrae | Aaron Buckley | Keith Reid

Tile drainage of agricultural fields is a conduit for nutrient losses. Preferential flow in the soil can more directly connect surface runoff with tile drainage compared with matrix flow, which may also increase P losses. In this study, water temperature was monitored in surface runoff and tile drainage and electrical conductivity (EC) was measured in tile drainage at two sites in southern Ontario with different soil types (i.e., clay and loam). These data were used to estimate the percentage of preferential flow in tile drainage based on end member mixing. Estimates using temperature were compared with estimates using EC, and both were evaluated across seasons and hydrographs and compared with P concentration and load data. There was strong correlation (r = .83) between estimates of preferential flow using the two methods, but due to variability in surface temperatures, EC provided a less flashy estimate for preferential flow (Durbin–Watson statistics of 0.34 for temperature and 0.09 for EC). Preferential flow accounted for a higher percentage of tile drainage flow in clay soil than loam, but percentages were not significantly different between seasons or timing within events. Phosphorus concentrations and loads were weakly correlated with preferential flow, suggesting that P transport was influenced by other factors as well. Although further work is necessary to calibrate these methods for estimating preferential flow from continuously monitored temperature and EC, this technique can be applied to already collected data to model and test posited explanations of observed phenomena in P, other nutrients, and water transport from tile‐drained agricultural land.