Journal of Great Lakes Research, Volume 46, Issue 3


Anthology ID:
G20-84
Month:
Year:
2020
Address:
Venue:
GWF
SIG:
Publisher:
Elsevier BV
URL:
https://gwf-uwaterloo.github.io/gwf-publications/G20-84
DOI:
Bib Export formats:
BibTeX MODS XML EndNote

pdf bib
Among-site variability in environmental and management characteristics: Effect on nutrient loss in agricultural tile drainage
Brittany R. Hanrahan | Kevin W. King | Merrin L. Macrae | Mark R. Williams | Jedediah H. Stinner

Abstract Water quality issues, including harmful and nuisance algal blooms (HNABs), related to nitrogen (N) and phosphorus (P) exported from agricultural lands persist in the Great Lakes region. Previous work examining N and P loss from agricultural fields in portions of the United States (US) and Canada (CA) that drain into Lake Erie, consistently indicate significant nutrient loss from fields in Indiana and Ohio, US compared with those in southwestern Ontario, CA. The primary objective of this study was to examine variation in environmental and management characteristics from 30 sites (US: n = 28, CA: n = 2) located within the Lake Erie Basin and subsequently determine the influence of among-site variation on edge-of-field N and P losses. Using principal component analyses (PCA), we found that among-site variation was predominantly controlled by broad-scale patterns in fertilizer management practices and soil properties; however, N and P loss metrics were largely unexplained by these gradients. As such, fine-scale variability and the interaction of environmental and management characteristics at individual sites more strongly influenced N and P loss. Ultimately, these results further emphasize the importance of site- and nutrient-specific management plans that are needed to mitigate N and P losses from agricultural fields.

pdf bib
Thirty-five years of restoring Great Lakes Areas of Concern: Gradual progress, hopeful future
John H. Hartig | Gail Krantzberg | Peter J. Alsip

In 1985, remedial action plan development was initiated to restore impaired beneficial uses in 42 Great Lakes Areas of Concern (AOCs). A 43rd AOC was designated in 1991. AOC restoration has not been easy as it requires networks focused on gathering stakeholders, coordinating efforts, and ensuring use restoration. As of 2019, seven AOCs were delisted, two were designated as Areas of Concern in Recovery, and 79 of 137 known use impairments in Canadian AOCs and 90 of 255 known use impairments in U.S. AOCs were eliminated. Between 1985 and 2019, a total of $22.78 billion U.S. was spent on restoring all AOCs. Pollution prevention investments should be viewed as spending to avoid future cleanups, and AOC restoration investments should be viewed as spending to help revitalize communities that has over a 3 to 1 return on investment. The pace of U.S. AOC restoration has accelerated under the Great Lakes Legacy Act (GLLA) and Great Lakes Restoration Initiative (GLRI). Sustained funding through U.S. programs like GLRI and GLLA and Canadian programs such as Canada-Ontario Agreement Respecting Great Lakes Water Quality and Ecosystem Health and the Great Lakes Protection Initiative is needed to restore all AOCs. Other major AOC program achievements include use of locally-designed ecosystem approaches, contaminated sediment remediation, habitat rehabilitation, controlling eutrophication, and advancing science. Key lessons learned include: ensure meaningful public participation; engage local leaders; establish a compelling vision; establish measurable targets; practice adaptive management; build partnerships; pursue collaborative financing; build a record of success; quantify benefits; and focus on life after delisting.