Water Resources Research, Volume 57, Issue 8


Anthology ID:
G21-112
Month:
Year:
2021
Address:
Venue:
GWF
SIG:
Publisher:
American Geophysical Union (AGU)
URL:
https://gwf-uwaterloo.github.io/gwf-publications/G21-112
DOI:
Bib Export formats:
BibTeX MODS XML EndNote

pdf bib
Advancing Space‐Time Simulation of Random Fields: From Storms to Cyclones and Beyond
Simon Michael Papalexiou | Francesco Serinaldi | Emilio Porcu | Simon Michael Papalexiou | Francesco Serinaldi | Emilio Porcu

Realistic stochastic simulation of hydro-environmental fluxes in space and time, such as rainfall, is challenging yet of paramount importance to inform environmental risk analysis and decision making under uncertainty. Here, we advance random fields simulation by introducing the concepts of general velocity fields and general anisotropy transformations. This expands the capabilities of the so-called Complete Stochastic Modeling Solution (CoSMoS) framework enabling the simulation of random fields (RF's) preserving: (a) any non-Gaussian marginal distribution, (b) any spatiotemporal correlation structure (STCS), (c) general advection expressed by velocity fields with locally varying speed and direction, and (d) locally varying anisotropy. We also introduce new copula-based STCS's and provide conditions guaranteeing their positive definiteness. To illustrate the potential of CoSMoS, we simulate RF's with complex patterns and motion mimicking rainfall storms moving across an area, spiraling fields resembling weather cyclones, fields converging to (or diverging from) a point, and colliding air masses. The proposed methodology is implemented in the freely available CoSMoS R package.

pdf bib
A Model for the Soil Freezing Characteristic Curve That Represents the Dominant Role of Salt Exclusion
Seth K. Amankwah | Andrew Ireson | Charles Maulé | Rosa Brannen | Simon A. Mathias | Seth K. Amankwah | Andrew Ireson | Charles Maulé | Rosa Brannen | Simon A. Mathias

The phenomenon of freezing point depression in frozen soils results in the co-existence of ice and liquid water in soil pores at temperatures below 273.15 K (0°C), and is thought to have two causes: (a) capillary and adsorption effects, where the phase transition relationship is modified due to soil-air-water-ice interactions, and (b) solute effects, where the presence of salts lowers the freezing temperature. The soil freezing characteristic curve (SFC) characterizes the relationship between liquid water content and temperature in frozen soils. Most hydrological models represent the SFC using only capillary and adsorption effects with a relationship known as the Generalized Clapeyron Equation (GCE). In this study, we develop and test a salt exclusion model for characterizing the SFC, comparing this with the GCE-based model and a combined salt-GCE effect model. We test these models against measured SFCs in laboratory and field experiments with diverse soil textures and salinities. We consistently found that the GCE-based models under-predicted freezing-point depression. We were able to match the observations with the salt exclusion model and the combined model, suggesting that salinity is a dominant control on the SFC in real soils that always contain solutes. In modeling applications where the salinity is unknown, the soil bulk solute concentration can be treated as a single fitting parameter. Improved characterization of the SFC may result in improvements in coupled mass-heat transport models for simulating hydrological processes in cold regions, particularly the hydraulic properties of frozen soils and the hydraulic head in frozen soils that drives cryosuction.