Sensors, Volume 21, Issue 11


Anthology ID:
G21-116
Month:
Year:
2021
Address:
Venue:
GWF
SIG:
Publisher:
MDPI AG
URL:
https://gwf-uwaterloo.github.io/gwf-publications/G21-116
DOI:
Bib Export formats:
BibTeX MODS XML EndNote

pdf bib
A Low-Cost Multi-Parameter Water Quality Monitoring System
Arif Ul Alam | Dennis Clyne | M. Jamal Deen | Arif Ul Alam | Dennis Clyne | M. Jamal Deen

Multi-parameter water quality monitoring is crucial in resource-limited areas to provide persistent water safety. Conventional water monitoring techniques are time-consuming, require skilled personnel, are not user-friendly and are incompatible with operating on-site. Here, we develop a multi-parameter water quality monitoring system (MWQMS) that includes an array of low-cost, easy-to-use, high-sensitivity electrochemical sensors, as well as custom-designed sensor readout circuitry and smartphone application with wireless connectivity. The system overcomes the need of costly laboratory-based testing methods and the requirement of skilled workers. The proposed MWQMS system can simultaneously monitor pH, free chlorine, and temperature with sensitivities of 57.5 mV/pH, 186 nA/ppm and 16.9 mV/°C, respectively, as well as sensing of BPA with <10 nM limit of detection. The system also provides seamless interconnection between transduction of the sensors’ signal, signal processing, wireless data transfer and smartphone app-based operation. This interconnection was accomplished by fabricating nanomaterial and carbon nanotube-based sensors on a common substrate, integrating these sensors to a readout circuit and transmitting the sensor data to an Android application. The MWQMS system provides a general platform technology where an array of other water monitoring sensors can also be easily integrated and programmed. Such a system can offer tremendous opportunity for a broad range of environmental monitoring applications.