Hydrological Processes, Volume 35, Issue 11

Anthology ID:
Bib Export formats:

pdf bib
Ten best practices to strengthen stewardship and sharing of water science data in Canada
Bhaleka Persaud | K. A. Dukacz | Gopal Chandra Saha | A. Peterson | L. Moradi | Simon Hearn | Erin Clary | Juliane Mai | Michael Steeleworthy | Jason J. Venkiteswaran | Homa Kheyrollah Pour | Brent B. Wolfe | Sean K. Carey | John W. Pomeroy | C. M. DeBeer | J. M. Waddington | Philippe Van Cappellen | Jimmy Lin

Water science data are a valuable asset that both underpins the original research project and bolsters new research questions, particularly in view of the increasingly complex water issues facing Canada and the world. Whilst there is general support for making data more broadly accessible, and a number of water science journals and funding agencies have adopted policies that require researchers to share data in accordance with the FAIR (Findable, Accessible, Interoperable, Reusable) principles, there are still questions about effective management of data to protect their usefulness over time. Incorporating data management practices and standards at the outset of a water science research project will enable researchers to efficiently locate, analyze and use data throughout the project lifecycle, and will ensure the data maintain their value after the project has ended. Here, some common misconceptions about data management are highlighted, along with insights and practical advice to assist established and early career water science researchers as they integrate data management best practices and tools into their research. Freely available tools and training opportunities made available in Canada through Global Water Futures, the Portage Network, Gordon Foundation's DataStream, Compute Canada, and university libraries, among others are compiled. These include webinars, training videos, and individual support for the water science community that together enable researchers to protect their data assets and meet the expectations of journals and funders. The perspectives shared here have been developed as part of the Global Water Futures programme's efforts to improve data management and promote the use of common data practices and standards in the context of water science in Canada. Ten best practices are proposed that may be broadly applicable to other disciplines in the natural sciences and can be adopted and adapted globally. This article is protected by copyright. All rights reserved.

pdf bib
Leveraging ensemble meteorological forcing data to improve parameter estimation of hydrologic models
Hongli Liu | Bryan A. Tolson | Andrew J. Newman | Andrew W. Wood

As continental to global scale high-resolution meteorological datasets continue to be developed, there are sufficient meteorological datasets available now for modellers to construct a historical forcing ensemble. The forcing ensemble can be a collection of multiple deterministic meteorological datasets or come from an ensemble meteorological dataset. In hydrological model calibration, the forcing ensemble can be used to represent forcing data uncertainty. This study examines the potential of using the forcing ensemble to identify more robust parameters through model calibration. Specifically, we compare an ensemble forcing-based calibration with two deterministic forcing-based calibrations and investigate their flow simulation and parameter estimation properties and the ability to resist poor-quality forcings. The comparison experiment is conducted with a six-parameter hydrological model for 30 synthetic studies and 20 real data studies to provide a better assessment of the average performance of the deterministic and ensemble forcing-based calibrations. Results show that the ensemble forcing-based calibration generates parameter estimates that are less biased and have higher frequency of covering the true parameter values than the deterministic forcing-based calibration does. Using a forcing ensemble in model calibration reduces the risk of inaccurate flow simulation caused by poor-quality meteorological inputs, and improves the reliability and overall simulation skill of ensemble simulation results. The poor-quality meteorological inputs can be effectively filtered out via our ensemble forcing-based calibration methodology and thus discarded in any post-calibration model applications. The proposed ensemble forcing-based calibration method can be considered as a more generalized framework to include parameter and forcing uncertainties in model calibration.