Nature Communications, Volume 12, Issue 1


Anthology ID:
G21-80
Month:
Year:
2021
Address:
Venue:
GWF
SIG:
Publisher:
Springer Science and Business Media LLC
URL:
https://gwf-uwaterloo.github.io/gwf-publications/G21-80
DOI:
Bib Export formats:
BibTeX MODS XML EndNote

pdf bib
Substantial hysteresis in emergent temperature sensitivity of global wetland CH4 emissions
Kuang‐Yu Chang | W. J. Riley | Sara Knox | Robert B. Jackson | Gavin McNicol | Benjamin Poulter | Mika Aurela | Dennis Baldocchi | Sheel Bansal | Gil Bohrer | David I. Campbell | Alessandro Cescatti | Housen Chu | Kyle Delwiche | Ankur R. Desai | E. S. Euskirchen | Thomas Friborg | Mathias Goeckede | Manuel Helbig | Kyle S. Hemes | Takashi Hirano | Hiroki Iwata | Minseok Kang | Trevor F. Keenan | Ken W. Krauss | Annalea Lohila | Ivan Mammarella | Bhaskar Mitra | Akira Miyata | Mats B. Nilsson | Asko Noormets | Walter C. Oechel | Dario Papale | Matthias Peichl | Michele L. Reba | Janne Rinne | Benjamin R. K. Runkle | Youngryel Ryu | Torsten Sachs | Karina V. R. Schäfer | Hans Peter Schmid | Narasinha Shurpali | Oliver Sonnentag | Angela C. I. Tang | Margaret Torn | Carlo Trotta | Eeva‐Stiina Tuittila | Masahito Ueyama | Rodrigo Vargas | Timo Vesala | L. Windham‐Myers | Zhen Zhang | Donatella Zona | Kuang‐Yu Chang | W. J. Riley | Sara Knox | Robert B. Jackson | Gavin McNicol | Benjamin Poulter | Mika Aurela | Dennis Baldocchi | Sheel Bansal | Gil Bohrer | David I. Campbell | Alessandro Cescatti | Housen Chu | Kyle Delwiche | Ankur R. Desai | E. S. Euskirchen | Thomas Friborg | Mathias Goeckede | Manuel Helbig | Kyle S. Hemes | Takashi Hirano | Hiroki Iwata | Minseok Kang | Trevor F. Keenan | Ken W. Krauss | Annalea Lohila | Ivan Mammarella | Bhaskar Mitra | Akira Miyata | Mats B. Nilsson | Asko Noormets | Walter C. Oechel | Dario Papale | Matthias Peichl | Michele L. Reba | Janne Rinne | Benjamin R. K. Runkle | Youngryel Ryu | Torsten Sachs | Karina V. R. Schäfer | Hans Peter Schmid | Narasinha Shurpali | Oliver Sonnentag | Angela C. I. Tang | Margaret Torn | Carlo Trotta | Eeva‐Stiina Tuittila | Masahito Ueyama | Rodrigo Vargas | Timo Vesala | L. Windham‐Myers | Zhen Zhang | Donatella Zona

Abstract Wetland methane (CH 4 ) emissions ( $${F}_{{{CH}}_{4}}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mrow> <mml:mi>F</mml:mi> </mml:mrow> <mml:mrow> <mml:msub> <mml:mrow> <mml:mi>C</mml:mi> <mml:mi>H</mml:mi> </mml:mrow> <mml:mrow> <mml:mn>4</mml:mn> </mml:mrow> </mml:msub> </mml:mrow> </mml:msub> </mml:math> ) are important in global carbon budgets and climate change assessments. Currently, $${F}_{{{CH}}_{4}}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mrow> <mml:mi>F</mml:mi> </mml:mrow> <mml:mrow> <mml:msub> <mml:mrow> <mml:mi>C</mml:mi> <mml:mi>H</mml:mi> </mml:mrow> <mml:mrow> <mml:mn>4</mml:mn> </mml:mrow> </mml:msub> </mml:mrow> </mml:msub> </mml:math> projections rely on prescribed static temperature sensitivity that varies among biogeochemical models. Meta-analyses have proposed a consistent $${F}_{{{CH}}_{4}}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mrow> <mml:mi>F</mml:mi> </mml:mrow> <mml:mrow> <mml:msub> <mml:mrow> <mml:mi>C</mml:mi> <mml:mi>H</mml:mi> </mml:mrow> <mml:mrow> <mml:mn>4</mml:mn> </mml:mrow> </mml:msub> </mml:mrow> </mml:msub> </mml:math> temperature dependence across spatial scales for use in models; however, site-level studies demonstrate that $${F}_{{{CH}}_{4}}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mrow> <mml:mi>F</mml:mi> </mml:mrow> <mml:mrow> <mml:msub> <mml:mrow> <mml:mi>C</mml:mi> <mml:mi>H</mml:mi> </mml:mrow> <mml:mrow> <mml:mn>4</mml:mn> </mml:mrow> </mml:msub> </mml:mrow> </mml:msub> </mml:math> are often controlled by factors beyond temperature. Here, we evaluate the relationship between $${F}_{{{CH}}_{4}}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mrow> <mml:mi>F</mml:mi> </mml:mrow> <mml:mrow> <mml:msub> <mml:mrow> <mml:mi>C</mml:mi> <mml:mi>H</mml:mi> </mml:mrow> <mml:mrow> <mml:mn>4</mml:mn> </mml:mrow> </mml:msub> </mml:mrow> </mml:msub> </mml:math> and temperature using observations from the FLUXNET-CH 4 database. Measurements collected across the globe show substantial seasonal hysteresis between $${F}_{{{CH}}_{4}}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mrow> <mml:mi>F</mml:mi> </mml:mrow> <mml:mrow> <mml:msub> <mml:mrow> <mml:mi>C</mml:mi> <mml:mi>H</mml:mi> </mml:mrow> <mml:mrow> <mml:mn>4</mml:mn> </mml:mrow> </mml:msub> </mml:mrow> </mml:msub> </mml:math> and temperature, suggesting larger $${F}_{{{CH}}_{4}}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mrow> <mml:mi>F</mml:mi> </mml:mrow> <mml:mrow> <mml:msub> <mml:mrow> <mml:mi>C</mml:mi> <mml:mi>H</mml:mi> </mml:mrow> <mml:mrow> <mml:mn>4</mml:mn> </mml:mrow> </mml:msub> </mml:mrow> </mml:msub> </mml:math> sensitivity to temperature later in the frost-free season (about 77% of site-years). Results derived from a machine-learning model and several regression models highlight the importance of representing the large spatial and temporal variability within site-years and ecosystem types. Mechanistic advancements in biogeochemical model parameterization and detailed measurements in factors modulating CH 4 production are thus needed to improve global CH 4 budget assessments.