Journal of Hydrology: Regional Studies, Volume 38

Anthology ID:
Elsevier BV
Bib Export formats:

pdf bib
A new lake classification scheme for the Peace-Athabasca Delta (Canada) characterizes hydrological processes that cause lake-level variation
Laura Neary | Casey R. Remmer | Jadine Krist | Brent B. Wolfe | Roland I. Hall

The Peace-Athabasca Delta, a Ramsar Wetland of International Importance in northeastern Alberta, is protected within Wood Buffalo National Park and contributes to its UNESCO World Heritage status yet is threatened by climate change and upstream energy projects. Recent drawdown of the delta’s abundant shallow lakes and rivers has deteriorated vital habitat for wildlife and impaired navigation routes. Here, we report continuous measurements at ~50 lakes during open-water seasons of 2018 and 2019 to improve understanding of hydrological processes causing lake-level variation. Analyses reveal four patterns of lake-level variation attributable to influential hydrological processes, which provide the basis for a new lake classification scheme: 1) ‘Drawdown’ (≥15 cm decline) by evaporation and/or outflow after ice-jam floods, 2) ‘Stable’ lake levels (<15 cm change) sustained by rainfall, 3) ‘Gradual Rise’ by inundation from the open-drainage network, and 4) ‘Rapid Rise’ by input of river floodwater. River flooding during the open-water season is an under-recognized recharge mechanism yet occurred extensively in the Athabasca sector and appears to be a common occurrence based on the Athabasca River hydrometric record. Lake-level loggers show strong ability to track shifts in hydrological processes, and can be integrated with other methods to decipher their causes and ecological consequences across water-rich landscapes. • Concerns over lake drying in the Peace-Athabasca Delta motivated this study. • Depth loggers captured lake-level responses to flooding, rainfall and evaporation. • Four patterns comprise a new classification scheme for lakes in the PAD. • Timing, magnitude and extent of open-water flooding was quantified. • Open-water season river flooding identified as an important recharge mechanism.

pdf bib
Application of artificial substrate samplers to assess enrichment of metals of concern by river floodwaters to lakes across the Peace-Athabasca Delta
Cory A. M. Savage | Tanner J. Owca | Mitchell L. Kay | Jelle A. Faber | Brent B. Wolfe | Roland I. Hall

Peace-Athabasca Delta (PAD), northeastern Alberta. Potential for downstream delivery of contaminants via Athabasca River floodwaters to lakes of the PAD has raised local to international concern. Here, we quantify enrichment of eight metals (Be, Cd, Cr, Cu, Ni, Pb, V, Zn) in aquatic biota, relative to sediment-based pre-industrial baselines, via analysis of biofilm-sediment mixtures accrued on artificial substrate samplers deployed during summers of 2017 and 2018 in > 40 lakes. Widespread flooding in the southern portion of the delta in spring 2018 allows for assessment of metal enrichment by Athabasca River floodwaters. River floodwaters are not implicated as a pathway of metal enrichment to biofilm-sediment mixtures in PAD lakes from upstream sources. MANOVA tests revealed no significant difference in residual concentrations of all eight metals in lakes that did not flood versus lakes that flooded during one or both study years. Also, no enrichment was detected for concentrations of biologically inert metals (Be, Cr, Pb) and those related to oil-sands development (Ni, V). Enrichment of Cd, Cu, and Zn at non-flooded lakes, however, suggests uptake of biologically active metals complicates comparisons of organic-rich biofilm-sediment mixtures to sediment-derived baselines for these metals. Results demonstrate that this novel approach could be adopted for lake monitoring within the federal Action Plan. • Oil sands monitoring of lakes in the Peace-Athabasca Delta needs pre-disturbance data. • Study compares [metals] in biofilm-sediment to [metals] in pre-1920 lake sediment. • Athabasca River floodwaters not implicated as pathway for metal enrichment. • Monitoring framework contributes to Wood Buffalo National Park Action Plan.