Journal of Hydrology, Volume 610
- Anthology ID:
- G22-57
- Month:
- Year:
- 2022
- Address:
- Venue:
- GWF
- SIG:
- Publisher:
- Elsevier BV
- URL:
- https://gwf-uwaterloo.github.io/gwf-publications/G22-57
- DOI:
Continuous hydrologic modelling for small and ungauged basins: A comparison of eight rainfall models for sub-daily runoff simulations
Salvatore Grimaldi
|
Elena Volpi
|
Andreas Langousis
|
Simon Michael Papalexiou
|
Davide Luciano De Luca
|
Rodolfo Piscopia
|
Sofia D. Nerantzaki
|
Georgia Papacharalampous
|
Andrea Petroselli
• Eight rainfall models are compared as input for a simplified continuous hydrologic model. • The comparison is performed by investigating the simulated runoff properties. • Results suggest that all rainfall models lead to realistic runoff time series. • Four models will be further optimized to be adapted for data-scarce applications. Continuous hydrologic modelling is a natural evolution of the event-based design approach in modern hydrology. It improves the rainfall-runoff transformation and provides the practitioner with more effective hydrological output information for risk assessment. However, this approach is still not widely adopted, mainly because the choice of the most appropriate rainfall simulation model (which is the core of continuous frameworks) for the specific aim of risk analysis has not been sufficiently investigated. In this paper, we test eight rainfall models by evaluating the performances of the simulated rainfall time series when used as input for a simplified continuous rainfall-runoff model, the COSMO4SUB, which is particularly designed for small and ungauged basins. The comparison confirms the capability of all models to provide realistic flood events and allows identifying the models to be further improved and tailored for data-scarce hydrological risk applications. The suggested framework is transferable to any catchment while different hydrologic and rainfall models can be used.
Increasing trends in rainfall erosivity in the Yellow River basin from 1971 to 2020
W. Wang
|
Shuiqing Yin
|
Ge Gao
|
Simon Michael Papalexiou
|
Z. Wang
• Rainfall erosivity for Yellow River basin increased significantly at both event and seasonal scale during 1971–2020. • Storms shifted towards longer durations and higher precipitation amounts. • Extreme precipitation within the basin occurred more frequently and intensely. • The increasing trend became more pronounced in the last two decades. Hourly precipitation data from 1971 to 2020, collected from 98 stations distributed across the Yellow River basin, were analyzed to detect changes in characteristics on rainfall and rainfall erosivity for all storms and storms with extreme erosivity (greater than 90 th percentile). Results showed that over the past 50 years, rainfall erosivity at both event and seasonal scales over the whole basin increased significantly ( p < 0.05) with rates of 5.46% and 6.86% decade -1 , respectively, compared to the 1981–2010 average values. Approximate 80% of 98 stations showed increasing trends and 20% of stations had statistically significant trends ( p < 0.1). The increase of rainfall erosivity resulted from the significant increasing trends of average storm precipitation ( p < 0.1), duration ( p < 0.1), rainfall energy ( p < 0.05) and maximum 1-h intensity ( p < 0.05). In addition, the total extreme erosivity showed significant upward trends at a relative rate of 6.05% decade -1 ( p < 0.05). Extreme erosivity storms occurred more frequently and with higher rainfall energy during the study period ( p < 0.05). Trends for seasonal total and extreme erosivity were also estimated based on daily rainfall data, and the changing magnitudes were similar to those based on hourly rainfall data, which suggested daily rainfall can be applied to detect interannual and long-term variations of rainfall erosivity in the absence of rainfall data with higher resolution. It was suggested that soil and water conservation strategies and vegetation projects conducted within the Yellow River basin should be continued and enhanced in the future.