@article{Price-2020-Contribution,
title = "Contribution of Point Source Inputs of Phosphorus from a Bunker Silo in a Small Agricultural Watershed in Southern Ontario, Canada",
author = "Price, Dylan",
journal = "Geography and Environmental Management, Master Thesis",
year = "2020",
publisher = "University of Waterloo",
url = "https://gwf-uwaterloo.github.io/gwf-publications/G20-2003",
doi = "10012/16394",
abstract = "Nutrient losses from agricultural operations contributes to the issue of eutrophication of freshwater systems. Although many studies have been conducted on diffuse nutrient losses from fertilizer application, there is a paucity of studies on point source phosphorus (P) loss from bunker silos. Furthermore, the build-up of legacy P in the landscape from historical land management practices can create critical source areas of P that contribute to P loads long after those practices cease. The goal of this thesis is to quantify the contribution of a dairy farm (dominated by bunker silo losses) to watershed P losses, and to monitor P concentrations in surface and groundwater across a riparian zone to characterize the sorption potential of its sediments and infer whether the riparian zone may be acting as a sink for P, or a source of previously retained (legacy) P to the stream. Stream discharge was monitored continuously throughout the study, and automatic water samplers were deployed in the stream above, and below the bunker silo to analyze soluble reactive P (SRP), total dissolved P (TDP), and total P (TP) on an event basis. The riparian zone was equipped with a series of nested wells and piezometers along a three transects to monitor groundwater P levels, and to determine the hydraulic conductivity of the riparian groundwater. A transect was also installed on the unaffected side of the transect as a reference. The farmyard contribution to watershed P losses over a one-year period was 32{\%} (SRP) and 22{\%} (TP). Cumulative loads over the entire study suggest that the farmyard P losses were 21.2 kg/ha SRP and 120 kg/ha TP. Peak P concentrations occurred during snowmelt and thaw events and were smaller during periods of baseflow. However, after the bunker silo was refilled in mid-summer months, both SRP and TP were considerably elevated. Large amounts of P were found to be stored in the riparian soil, however, estimated contributions of riparian P to the overall loads were negligible. This may be a result of missed flowpaths during site set-up, or an occurrence of upwelling of P in the streambed. The results of this research suggest that this particular farmyard bunker silo contributes large amounts of P to the adjacent stream on an annual basis. This study should be used as a starting point for future studies examining livestock farmyard nutrient losses.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="Price-2020-Contribution">
<titleInfo>
<title>Contribution of Point Source Inputs of Phosphorus from a Bunker Silo in a Small Agricultural Watershed in Southern Ontario, Canada</title>
</titleInfo>
<name type="personal">
<namePart type="given">Dylan</namePart>
<namePart type="family">Price</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<genre authority="bibutilsgt">journal article</genre>
<relatedItem type="host">
<titleInfo>
<title>Geography and Environmental Management, Master Thesis</title>
</titleInfo>
<originInfo>
<issuance>continuing</issuance>
<publisher>University of Waterloo</publisher>
</originInfo>
<genre authority="marcgt">periodical</genre>
<genre authority="bibutilsgt">academic journal</genre>
</relatedItem>
<abstract>Nutrient losses from agricultural operations contributes to the issue of eutrophication of freshwater systems. Although many studies have been conducted on diffuse nutrient losses from fertilizer application, there is a paucity of studies on point source phosphorus (P) loss from bunker silos. Furthermore, the build-up of legacy P in the landscape from historical land management practices can create critical source areas of P that contribute to P loads long after those practices cease. The goal of this thesis is to quantify the contribution of a dairy farm (dominated by bunker silo losses) to watershed P losses, and to monitor P concentrations in surface and groundwater across a riparian zone to characterize the sorption potential of its sediments and infer whether the riparian zone may be acting as a sink for P, or a source of previously retained (legacy) P to the stream. Stream discharge was monitored continuously throughout the study, and automatic water samplers were deployed in the stream above, and below the bunker silo to analyze soluble reactive P (SRP), total dissolved P (TDP), and total P (TP) on an event basis. The riparian zone was equipped with a series of nested wells and piezometers along a three transects to monitor groundwater P levels, and to determine the hydraulic conductivity of the riparian groundwater. A transect was also installed on the unaffected side of the transect as a reference. The farmyard contribution to watershed P losses over a one-year period was 32% (SRP) and 22% (TP). Cumulative loads over the entire study suggest that the farmyard P losses were 21.2 kg/ha SRP and 120 kg/ha TP. Peak P concentrations occurred during snowmelt and thaw events and were smaller during periods of baseflow. However, after the bunker silo was refilled in mid-summer months, both SRP and TP were considerably elevated. Large amounts of P were found to be stored in the riparian soil, however, estimated contributions of riparian P to the overall loads were negligible. This may be a result of missed flowpaths during site set-up, or an occurrence of upwelling of P in the streambed. The results of this research suggest that this particular farmyard bunker silo contributes large amounts of P to the adjacent stream on an annual basis. This study should be used as a starting point for future studies examining livestock farmyard nutrient losses.</abstract>
<identifier type="citekey">Price-2020-Contribution</identifier>
<identifier type="doi">10012/16394</identifier>
<location>
<url>https://gwf-uwaterloo.github.io/gwf-publications/G20-2003</url>
</location>
<part>
<date>2020</date>
</part>
</mods>
</modsCollection>
%0 Journal Article
%T Contribution of Point Source Inputs of Phosphorus from a Bunker Silo in a Small Agricultural Watershed in Southern Ontario, Canada
%A Price, Dylan
%J Geography and Environmental Management, Master Thesis
%D 2020
%I University of Waterloo
%F Price-2020-Contribution
%X Nutrient losses from agricultural operations contributes to the issue of eutrophication of freshwater systems. Although many studies have been conducted on diffuse nutrient losses from fertilizer application, there is a paucity of studies on point source phosphorus (P) loss from bunker silos. Furthermore, the build-up of legacy P in the landscape from historical land management practices can create critical source areas of P that contribute to P loads long after those practices cease. The goal of this thesis is to quantify the contribution of a dairy farm (dominated by bunker silo losses) to watershed P losses, and to monitor P concentrations in surface and groundwater across a riparian zone to characterize the sorption potential of its sediments and infer whether the riparian zone may be acting as a sink for P, or a source of previously retained (legacy) P to the stream. Stream discharge was monitored continuously throughout the study, and automatic water samplers were deployed in the stream above, and below the bunker silo to analyze soluble reactive P (SRP), total dissolved P (TDP), and total P (TP) on an event basis. The riparian zone was equipped with a series of nested wells and piezometers along a three transects to monitor groundwater P levels, and to determine the hydraulic conductivity of the riparian groundwater. A transect was also installed on the unaffected side of the transect as a reference. The farmyard contribution to watershed P losses over a one-year period was 32% (SRP) and 22% (TP). Cumulative loads over the entire study suggest that the farmyard P losses were 21.2 kg/ha SRP and 120 kg/ha TP. Peak P concentrations occurred during snowmelt and thaw events and were smaller during periods of baseflow. However, after the bunker silo was refilled in mid-summer months, both SRP and TP were considerably elevated. Large amounts of P were found to be stored in the riparian soil, however, estimated contributions of riparian P to the overall loads were negligible. This may be a result of missed flowpaths during site set-up, or an occurrence of upwelling of P in the streambed. The results of this research suggest that this particular farmyard bunker silo contributes large amounts of P to the adjacent stream on an annual basis. This study should be used as a starting point for future studies examining livestock farmyard nutrient losses.
%R 10012/16394
%U https://gwf-uwaterloo.github.io/gwf-publications/G20-2003
%U https://doi.org/10012/16394
Markdown (Informal)
[Contribution of Point Source Inputs of Phosphorus from a Bunker Silo in a Small Agricultural Watershed in Southern Ontario, Canada](https://gwf-uwaterloo.github.io/gwf-publications/G20-2003) (Price, GWF 2020)
ACL
- Dylan Price. 2020. Contribution of Point Source Inputs of Phosphorus from a Bunker Silo in a Small Agricultural Watershed in Southern Ontario, Canada. Geography and Environmental Management, Master Thesis.